[1] |
Quan L, Jiang H, Mei G L, Sun Y J, You B. Bifunctional electrocatalysts for overall and hybrid water splitting[J]. Chem. Rev., 2024, 124(7): 3694-3812. https: https://doi.org/10.1021/acs.chemrev.3c00332
|
[2] |
Yao W Q, Liao K, Lai T X, Sul H, Manthiram A. Rechargeable metal-sulfur batteries: key materials to mechanisms[J]. Chem. Rev., 2024, 124(8): 4935-5118. https://doi.org/10.1021/acs.chemrev.3c00919
|
[3] |
Lu G L, Hou X H, Ding J Y, Qin Y J, Luo J, Liu X J. Research progress in electrocatalytic reduction of nitrate to ammonia by copper-based materials[J]. Chin. Sci. Bull., 2024, 69(25): 3728-3747. https://doi.org/10.1360/TB-2023-1349
|
[4] |
Zhang T Y, Shi X H, Li Y, Sangaraju S, Wang F J, Yang L, Ran F. Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries[J]. Mater. R. Energy, 2024, 4(2): 100272. https://doi.org/10.1016/j.matre.2024.100272
|
[5] |
Qin Y J, Luo J. Applications of single-atom catalysts in CO2 conversion[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. https://doi.org/10.7503/cjcu20220300
|
[6] |
Liu X J, Chen M Y, Ma J J, Liang J Q, Li C S, Chen C J, He H B. Advances in the synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications[J]. China Powder Sci. Technol., 2024, 30(5): 35-45. https://doi.org/10.13732/j.issn.1008-5548.2024.05.004
|
[7] |
Yang J P, Zhang F Z, Chen J. Structural design and application of fiber-based electrocatalytic materials[J]. China Powder Sci. Technol., 2024, 30(4): 161-170. https://doi.org/10.13732/j.issn.1008-5548.2024.04.015
|
[8] |
Chen X, Qin Y J, Feng X C, Yang S Q, Wang H, Lian M L, Zhang D X, Guo Q Q, Luo J, Yang J, Wang X Z. Hierarchical multi-dimensional Mn2GeO4 coupled with CNT for long-cycling lithium-ion battery[J]. Inorg. Chem. Commun., 2024, 164: 112467. https://doi.org/10.1016/j.inoche.2024.112467
|
[9] |
El Aggadi S, Ennouhi M, Boutakiout A, El Hourch A. Progress towards efficient phosphate-based materials for sodium-ion batteries in electrochemical energy storage[J]. Ionics, 2023, 29(6): 2099-2113.
|
[10] |
Alhammadi A S, Yun H J, Choi D. Investigation of LiFePO4/MWCNT cathode-based half-cell lithium-ion batteries in subzero temperature environments[J]. Ionics, 2023, 29(6): 2163-2174. https://doi.org/10.1007/s11581-023-04953-9
|
[11] |
Qin Y J, Cao H J, Liu Q, Yang S Q, Feng X C, Wang H, Lian M L, Zhang D X, Wang H, Luo J, Liu X J. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2024, 18(1): 6. https://doi.org/10.1007/s11705-023-2373-1
|
[12] |
Zhang H, Luo Y, Chu P K, Liu Q, Liu X J, Zhang S S, Luo J, Wang X Z, Hu G Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting[J]. J. Alloys Compd., 2022, 922: 166113. https://doi.org/10.1016/j.jallcom.2022.166113
|
[13] |
Peng X Y, Hou J R, Mi Y Y, Sun J Q, Qi G C, Qin Y J, Zhang S S, Qiu Y, Luo J, Liu X J. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production[J]. Nanoscale, 2021, 13(9): 4767-4773. https://doi.org/10.1039/d0nr09104a
|
[14] |
Liu W J, Liu W X, Hou T, Ding J Y, Wang Z G, Yin R L, San X Y, Feng L G, Luo J, Liu X J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting[J]. Nano Res., 2024, 17(6): 4797-4806. https://doi.org/10.1007/s12274-024-6433-8
|
[15] |
Cheng H H, Li J P, Meng T, Shu D. Advances in Mn‐based MOFs and their derivatives for high‐performance supercapacitor[J]. Small, 2024, 20(20): 2308804. https://doi.org/10.1002/smll.202308804
|
[16] |
Han J J, Yan Q R, Chen Z W, Wang Z, Chen C. Application of Cr-metal organic framework (MOF) modified polyaniline/graphene oxide materials in supercapacitors[J]. Ionics, 2022, 28(5): 2349-2362. https://doi.org/10.1007/s11581-022-04443-4
|
[17] |
Jayakumar A, Antony R P, Wang R, Lee J M. MOF‐derived hollow cage NixCo3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13(11): 1603102. https://doi.org/10.1002/smll.2016031024
|
[18] |
Zhu J, Shen X P, Kong L R, Zhu G X, Ji Z Y, Xu K Q, Li B L, Zhou H, Yue X Y. MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites for high performance supercapacitors[J]. Dalton T., 2019, 48(28): 10661-10668. https://doi.org/10.1039/c9dt01629e
|
[19] |
Qin Y J, Han X, Li Y P, Han A J, Liu W X, Xu H J, Liu J F. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis[J]. ACS Catal., 2020, 10(11): 5973-5978. https://dx.doi.org/10.1021/acscatal.0c01432
|
[20] |
Yang M S, Sun J Q, Qin Y J, Yang H, Zhang S S, Liu X J, Luo J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis[J]. Sci. China Mater., 2021, 65(2): 536-542. https://doi.org/10.1007/s40843-021-1890-7
|
[21] |
Qin Y L, Wang B Q, Qiu Y, Liu X J, Qi G C, Zhang S S, Han A J, Luo J, Liu J F. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction[J]. Chem. Commun., 2021, 57(22): 2752-2755. https://dx.doi.org/10.1039/d0cc07643k
|
[22] |
Yang Y, Zhang W R, Chen K W, Chen Y T, Dai X J, Gong C H, Wang P. Research progress on adsorption mechanism of radioactive iodine by metal-organic framework composites[J]. China Powder Sci. Technol., 2024, 30(4): 151-160. https://dx.doi.org/10.13732/j.issn.1008-5548.2024.04.014
|
[23] |
Wang X G, He Z X, Ding D F, Luo X Q, Dai L, Zhang W Q, Ma Q, Huang Y, Xia F. Highly sensitive detection of strontium ions using metal-organic frameworks functionalized solid-state nanochannels[J]. J. Electrochem., 2024, 30(10): 2414003. https://doi.org/10.61558/2993-074X.3482
|
[24] |
Shi Q Y, Zhao Y, Liu M H, Shi F Y, Chen L X, Xu X R, Gao J, Zhao H B, Lu F P, Qin Y J, Zhang Z, Lian M L. Engineering platelet membrane-coated bimetallic MOFs as biodegradable nanozymes for efficient antibacterial therapy[J]. Small, 2023, 20(23): 2309366. https://doi.org/10.1002/smll.202309366
|
[25] |
Han X, Zhang T Y, Wang X H, Zhang Z D, Li Y P, Qin Y J, Wang B Q, Han A J, Liu J F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules[J]. Nat. Commun., 2022, 13(1): 2900. https://doi.org/10.1038/s41467-022-30520-3
|
[26] |
Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem. Soc. Rev., 2020, 49(5): 1414-1448. https://doi.org/ 10.1039/c9cs00906j
|
[27] |
Qin Y J, Wang F Q, Shang J, Iqbal M, Han A J, Sun X M, Xu H J, Liu J F. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction[J]. J. Energy Chem., 2020, 43: 104-107. https://doi.org/10.1016/j.jechem.2019.08.014
|
[28] |
Lu Y, Yu L, Wu M H, Wang Y, Lou X W. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties[J]. Adv. Mater., 2017, 30(1): 1702875. https://doi.org/10.1002/adma.201702875
|
[29] |
He P, Yu X Y, Lou X W. Carbon‐incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angew. Chem. Int. Ed., 2017, 56(14): 3897-3900. http://dx.doi.org/10.1002/anie.201612635
|
[30] |
Hu H, Guan B Y, Lou X W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors[J]. Chem, 2016, 1(1): 102-113.http://dx.doi.org/10.1016/j.chempr.2016.06.001
|
[31] |
He P P, Shi J H, Li X Y, Liu M J, Fang Z, He J, Li Z J, Peng X S, He Q G. A CNT intercalated Co porphyrin-based metal organic framework catalyst for oxygen reduction reaction[J]. J. Electrochem., 2025, 31(1): 2405241. https://doi.org/10.61558/2993-074X.3502
|
[32] |
Dennyson Savariraj A, Justin Raj C, Kale A M, Kim B C. Road map for in situ grown binder‐free MOFs and their derivatives as freestanding electrodes for supercapacitors[J]. Small, 2023, 19(20): 2207713. https://doi.org/10.1002/smll.202207713
|
[33] |
Rashi. Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications[J]. Ceram. Int., 2023, 49(1): 40-47. https://doi.org/10.1016/j.ceramint.2022.10.333
|
[34] |
Mane V A, Dake D V, Raskar N D, Sonpir R B, Gattu K P, Shirsat M D, Dole B N. Harnessing the synergistic effects of graphene oxide based Sn/Fe codoped Bi2O3 nanocomposites for superior supercapacitor performance[J]. J. Energy Storage, 2024, 96: 112636. https://doi.org/10.1016/j.est.2024.112636
|
[35] |
Lin Z H, Han Z J, O'connell G E P, Wan T, Zhang D, Ma Z P, Chu D W, Lu X Y. Graphene and MOF assembly: enhanced fabrication and functional derivative via MOF amorphization[J]. Adv. Mater., 2024, 36(19): 2312797. https://doi.org/10.1002/adma.202312797
|
[36] |
Zhao J W, Wei Z Q, Wang C, Zhou M P, Lu C G. NiCo2S4/rGO composite electrode material derived from Co-based MOFs for hybrid supercapacitors[J]. Ionics, 2024, 30(3): 1723-1733. https://doi.org/10.1007/s11581-024-05399-3
|
[37] |
Liu S A, Jin M M, Sun J Q, Qin Y J, Gao S S, Chen Y, Zhang S S, Luo J, Liu X J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst[J]. Chem. Eng. J., 2022, 437: 135294. https://doi.org/10.1016/j.cej.2022.135294
|
[38] |
Cao H J, Wei T R, Liu Q, Zhang S S, Qin Y J, Wang H, Luo J, Liu X J. Hollow carbon cages derived from polyoxometalate-encapsuled metal-organic frameworks for energy-saving hydrogen production[J]. ChemCatChem, 2023, 15(5): 202201615. https://doi.org/10.1002/cctc.202201615
|
[39] |
Wang W X, Liu Y, Yue Y F, Wang H H, Cheng G, Gao C Y, Chen C L, Ai Y J, Chen Z, Wang X K. The confined interlayer growth of ultrathin two-dimensional Fe3O4 nanosheets with enriched oxygen vacancies for peroxymonosulfate activation[J]. ACS Catal., 2021, 11(17): 11256-11265. https://doi.org/10.1021/acscatal.1c03331
|
[40] |
Wang T W, Gao S S, Wei T R, Qin Y J, Zhang S S, Ding J Y, Liu Q, Luo J, Liu X J. Co Nanoparticles confined in mesoporous Mo/N Co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction[J]. Chem. Eur. J., 2023, 29(23): 202204034. https://doi.org/10.1002/chem.202204034
|
[41] |
Jamadar A S, Sutar R, Patil S, Khandekar R, Yadav J B. Progress in metal oxide-based electrocatalysts for sustainable water splitting[J]. Mater. R. Energy, 2024, 4(3): 100283. https://doi.org/10.1016/j.matre.2024.100283
|
[42] |
Ge S M, Zhang L W, Hou J R, Liu S, Qin Y J, Liu Q, Cai X B, Sun Z Y, Yang M S, Luo J, Liu X J. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density[J]. ACS Appl. Energy Mater., 2022, 5(8): 9487-9494. https://doi.org/10.1021/acsaem.2c01006
|
[43] |
Liu Y F, Guo Y S, Jiang Y R, Feng L Z, Sun Y, Wang Y J. Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials[J]. Mater. R. Energy, 2024, 4(1): 100252. https://doi.org/10.1016/j.matre.2024.100252
|