[1] |
Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[C]. Chem. Soc. Rev., 2015, 44(8): 2168-2201.
|
[2] |
Chen Z W, Higgins D, Yu A P, Zhang L, Zhang J J. A review on non-precious metal electrocatalysts for PEM fuel cells[C]. Energy. Environ. Sci., 2011, 4(9): 3167-3192.
|
[3] |
Hou J G, Wu Y Z, Zhang B, Cao S Y, Li Z W, Sun L C. Rational design of nanoarray architectures for electrocatalytic water splitting[J]. Adv. Funct. Mater., 2019, 29(20): 1808367.
|
[4] |
Liang Z Z, Fan X, Lei H T, Qi J, Li Y Y, Gao J P, Huo M L, Yuan H T, Zhang W, Lin H P, Zheng H Q, Cao R. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13187-13191.
doi: 10.1002/anie.201807854
pmid: 30095856
|
[5] |
Zhang C C, Yang H, Zhong D, Xu Y, Wang Y Z, Yuan Q, Liang Z Z, Wang B, Zhang W, Zheng H Q, Cheng T, Cao R. A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction[J]. J. Mater. Chem. A., 2020, 8(19): 9536-9544.
|
[6] |
Wang M Q, Yang W H, Wang H H, Chen C, Zhou Z Y, Sun S G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium[J]. ACS. Catal., 2014, 4(11): 3928-3936.
|
[7] |
Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction[J]. Electrochim. Acta., 2008, 53(15): 4937-4951.
|
[8] |
Fu K, Wang Y, Mao L C, Yang X X, Jin J H, Yang S L, Li G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary zinc-air battery[J]. Chem. Eng. J., 2018, 351: 94-102.
|
[9] |
Yin Y H, Zhang H B, Gao R Z, Wang A L, Mao X X, Dong H Y, Yang S T. In situ synthesis of metal embedded nitrogen doped carbon nanotubes as an electrocatalyst for the oxygen reduction reaction with high activity and stability[J]. RSC. Adv., 2018, 8(44): 25051-25056.
|
[10] |
Zhang B B, Sun L C. Artificial photosynthesis: opportunities and challenges of molecular catalysts[J]. Chem. Soc. Rev., 2019, 48(7): 2216-2264.
doi: 10.1039/c8cs00897c
pmid: 30895997
|
[11] |
Pegis M L, Wise C F, Martin D J, Mayer J M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chem. Rev., 2018, 118(5): 2340-2391.
doi: 10.1021/acs.chemrev.7b00542
pmid: 29406708
|
[12] |
Zhang W, Lai W Z, Cao R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017, 117(4): 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
pmid: 28222601
|
[13] |
Guo X J, Wang N, Li X L, Zhang Z Y, Zhao J P, Ren W J, Ding S P, Xu G L, Li J F, Apfel U P, Zhang W, Cao R. Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8941-8946.
doi: 10.1002/anie.202002311
pmid: 32103606
|
[14] |
Bhunia S, Rana A, Roy P, Martin D J, Pegis M L, Roy B, Dey A. Rational design of mononuclear iron porphyrins for facile and selective 4e-/4H+ O2 reduction: Activation of O-O Bond by 2nd sphere hydrogen bonding[J]. J. Am. Chem. Soc., 2018, 140(30): 9444-9457.
|
[15] |
Xie L S, Zhang X P, Zhao B, Li P, Qi J, Guo X N, Wang B, Lei H T, Zhang W, Apfel U P, Cao R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7576-7581.
doi: 10.1002/anie.202015478
pmid: 33462971
|
[16] |
Costentin C, Saveant J M. Homogeneous molecular catalysis of electrochemical reactions: Manipulating intrinsic and operational factors for catalyst improvement[J]. J. Am. Chem. Soc., 2018, 140(48): 16669-16675.
doi: 10.1021/jacs.8b09154
pmid: 30392356
|
[17] |
Lv B, Li X L, Guo K, Ma J, Wang Y Z, Lei H T, Wang F, Jin X T, Zhang Q X, Zhang W, Long R, Xiong Y J, Apfel U P, Cao R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew. Chem. Int. Ed., 2021, 60(23): 12742-12746.
doi: 10.1002/anie.202102523
pmid: 33742485
|
[18] |
Brezny A C, Johnson S I, Raugei S, Mayer J M. Selectivity-determining steps in O2 reduction catalyzed by iron(tetramesitylporphyrin)[J]. J. Am. Chem. Soc., 2020, 142(9): 4108-4113.
doi: 10.1021/jacs.9b13654
pmid: 32064870
|
[19] |
Liu Y J, Zhou G J, Zhang Z Y, Lei H T, Yao Z, Li J F, Lin J, Cao R. significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(II) porphyrin-porphyrin dyad[J]. Chem. Sci., 2020, 11(1): 87-96.
doi: 10.1039/c9sc05041h
pmid: 32110360
|
[20] |
Guo K, Lei H T, Li X L, Zhang Z Y, Wang Y B, Guo H B, Zhang W, Cao R. Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins[J]. Chin. J. Catal., 2021, 42(9): 1439-1444.
|
[21] |
Sun L, Reddu V, Fisher A C, Wang X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts[J]. Energ. Environ. Sci., 2020, 13(2): 374-403.
|
[22] |
Corbin N, Zeng J, Williams K, Manthiram K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction[J]. Nano Res., 2019, 12(9): 2093-2125.
|
[23] |
Sévery L, Szczerbinski J, Taskin M, Tuncay I, Nunes F B, Cignarella C, Tocci G, Blacque O, Osterwalder J, Zenobi R, Iannuzzi M, Tilley S D. Immobilization of molecular catalysts on electrode surfaces using host-guest interactions[J]. Nat. Chem., 2021, 13(6): 523-529.
doi: 10.1038/s41557-021-00652-y
pmid: 33767362
|
[24] |
Sun C F, Gobetto R, Nervi C. Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes[J]. New. J. Chem., 2016, 40(7): 5656-5661.
|
[25] |
Diercks C S, Liu Y Z, Cordova K E, Yaghi O M. The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nat. Mater., 2018, 17(10): 943-943.
|
[26] |
Yang Z W, Chen J M, Qiu L Q, Xie W J, He L N. Molecular engineering of metal complexes for electrocatalytic carbon dioxide reduction: from adjustment of intrinsic activity to molecular immobilization[J]. Angew. Chem. Int. Edit., 2022, 61(44): e202205301
|
[27] |
Li X L, Lei H T, Xie L S, Wang N. Zhang W, Cao R. Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions[J]. Acc. Chem. Res., 2022, 55(6): 878-892.
|
[28] |
Xie W Y, Ling C, Huang Z Y, Chen W C, He S F, Si L P, Liu H Y. Metalloporphyrin doped rice husk-based biomass porous carbon materials as high performance electrocatalyst for oxygen reduction reaction in Zn-air battery[J]. Int. J. Hydrogen. Energ., 2024, 51: 857-868.
|
[29] |
Leng F C, Liu H, Ding M L, Lin Q P, Jiang H L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters[J]. ACS. Catal., 2018, 8(5): 4583-4590.
|
[30] |
Yang J, Wang Z, Li Y S, Zhuang Q X, Zhao W R, Gu J L. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase[J]. Rsc. Adv., 2016, 6(74): 69807-69814.
|
[31] |
Gil-San-Millan R, Koziel M, Bury W. Multivariate porphyrinic MOFs as precursors of nanoalloy catalysts for efficient dehydrogenation of hydrogen molecular carriers[J]. ACS. Appl. Energ. Mater., 2023, 6(18): 9136-9144.
|
[32] |
Cichocka M O, Liang Z Z, Feng D W, Back S, Siahrostami S, Wang X, Samperisi L, Sun Y J, Xu H Y, Hedin N, Zheng H Q, Zou X D, Zhou H C, Huang Z H. A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units[J]. J. Am. Chem. Soc., 2020, 142(36): 15386-15395.
doi: 10.1021/jacs.0c06329
pmid: 32786758
|
[33] |
Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Férey G, Vittadini A, Gross S, Serre C. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks[J]. Angew. Chem. Int. Edit., 2012, 51(37): 9267-9271.
|