欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (1): 2405241.  doi: 10.61558/2993-074X.3502

• 论文 • 上一篇    下一篇

碳纳米管穿插钴基卟啉金属有机框架催化ORR

何佩佩a,#, 师锦华a,#, 李笑语a, 刘明杰a, 方舟b, 和晶a, 李中坚a, 彭新生b, 和庆钢a,*()   

  1. a浙江大学化学工程与生物工程学院,浙江 杭州 310058
    b浙江大学材料科学与工程学院,浙江 杭州 310058
  • 收稿日期:2024-05-24 修回日期:2031-11-03 接受日期:2024-09-06 出版日期:2024-10-16 发布日期:2024-10-16
  • 通讯作者: 和庆钢 E-mail:qghe@zju.edu.cn

A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction

He Pei-Peia,#, Shi Jin-Huaa,#, Li Xiao-Yua, Liu Ming-Jiea, Fang Zhoub, He Jinga, Li Zhong-Jiana, Peng Xin-Shengb, He Qing-Ganga,*()   

  1. aCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
    bSchool of materials science and engineering, Zhejiang University, Hangzhou 310058, P.R. China
  • Received:2024-05-24 Revised:2031-11-03 Accepted:2024-09-06 Published:2024-10-16 Online:2024-10-16
  • Contact: He Qing-Gang E-mail:qghe@zju.edu.cn
  • About author:First author contact:

    #These authors contributed equally to this work.

摘要:

金属有机框架(MOF)材料作为典型的半导体材料,由于其本征的较差电子导电性,严重限制了其在燃料电池电催化领域的直接应用。为此,本文提出了一种解决策略,即在MOF晶体生长过程中加入碳纳米管(CNTs),最终合成了一种具有独特的CNT穿插在MOF晶体结构中的Co金属卟啉基的催化剂TCPPCo-MOF-CNT。物理表征表明,CNTs的插入不仅增强了催化剂整体的导电性,同时也保留了MOF本身的晶体结构和金属卟啉的原始特性。并且,由于CNTs的插入,在催化剂内部形成了大量促进传质的介孔结构,并产生了可以极大提升反应过程中传质效率的分级多孔结构。XPS揭示了插入的CNT中的碳原子改变了催化活性中心Co上的电子云密度,优化了催化中心的电子结构。在中性条件下,TCPPCo-MOF-CNT催化剂的半波电位达到0.77 V(vs. RHE),明显优于未插入CNT的单纯MOF材料制备的催化剂。最后,将TCPPCo-MOF-CNT作为阴极催化剂和Nafion-117组装成PEM微生物燃料电池(MFCs),MFCs显示其最大功率密度可达到约500 mW·m-2。因此,TCPPCo-MOF-CNT可作为一种有效的中性环境下ORR催化剂,同时此策略也为其他半导体材料提升电催化活性提供了一种方法。

关键词: 金属有机框架, 碳纳米管穿插, 电催化, 氧还原反应, 微生物燃料电池

Abstract:

The poor electronic conductivity of metal-organic framework (MOF) materials hinders their direct application in the field of electrocatalysis in fuel cells. Herein, we proposed a strategy of embedding carbon nanotubes (CNTs) during the growth process of MOF crystals, synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure. Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin. Simultaneously, the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency. X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co, optimizing the electronic structure. Consequently, the E1/2 of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V (vs. RHE), outperforming the catalyst without CNTs. When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells (MFCs) with Nafion-117 as the proton exchange membrane, the maximum power density of MFCs reached approximately 500 mW·m-2.

Key words: Metal organic framework, CNT intercalated, Electrocatalysis, Oxygen reduction reaction, Microbial fuel cell