[1] |
Sun Q, Li X H, Wang K X, Ye T N, Chen J S. Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction[J]. Energy Environ. Sci., 2023, 16(5): 1838-1869.
|
[2] |
Zhang C H, Zhang Q, Hu Y Z, Hu H Y, Yang J H, Yang C, Zhu Y, Tu Z K, Wang D L. N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2024, 36(3): 110429. DOI:10.1016/j.cclet.2024.110429.
|
[3] |
Chen F D, Xie Z Y, Li M T, Chen S G, Ding W, Li L, Li J, Wei Z D. Series reports from professor Wei’s group of chongqing university: advancements in electrochemical energy conversions (1/4): report 1: high-performance oxygen reduction catalysts for fuel cells[J]. J. Electrochem., 2024, 30(7): 2314007.
|
[4] |
Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 2203081.
|
[5] |
Chen H J, Tang M H, Chen S L. Hydrophobicity optimization of cathode catalyst layer for proton exchange membrane fuel cell[J]. J. Electrochem., 2023, 29(9): 2207061.
|
[6] |
Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
|
[7] |
Zhang H, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chem. Rev., 2012, 112(5): 2780-2832.
doi: 10.1021/cr200035s
pmid: 22339373
|
[8] |
Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds P E, Ekins P, Shah N, Ward K R. The role of hydrogen and fuel cells in the global energy system[J]. Energy Environ. Sci., 2019, 12(2): 463-491.
|
[9] |
Yang Z L, Yang H Z, Shang L, Zhang T R. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202113278.
|
[10] |
Lin F X, Li M G, Zeng L Y, Luo M C, Guo S J. Intermetallic nanocrystals for fuel-cells-based electrocatalysis[J]. Chem. Rev., 2023, 123(22): 12507-12593.
doi: 10.1021/acs.chemrev.3c00382
pmid: 37910391
|
[11] |
Yan L, Li P P, Zhu Q Y, Kumar A, Sun K, Tian S B, Sun X M. Atomically precise electrocatalysts for oxygen reduction reaction[J]. Chem, 2023, 9(2): 280-342.
|
[12] |
Zhang Q, Shen T, Song M, Wang S, Zhang J L, Huang X, Lu S F, Wang D L. High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction[J]. J. Energy Chem., 2023, 86: 158-166.
|
[13] |
Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat. Nanotechnol., 2021, 16(2): 140-147.
doi: 10.1038/s41565-020-00824-w
pmid: 33479539
|
[14] |
Lazaridis T, Stühmeier B M, Gasteiger H A, El-Sayed H A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts[J]. Nat. Catal., 2022, 5(5): 363-373.
|
[15] |
Song M, Zhang Q, Shen T, Luo G Y, Wang D L. Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2023, 35(8): 109083.
|
[16] |
Hu Y Z, Wang S, Shen T, Zhu Y, Wang D L. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Sci. Technol., 2022, 11(4): 1264-1277.
|
[17] |
Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H, Li Q. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J]. Adv. Energy Mater., 2019, 9(17): 1803771.
|
[18] |
Yan W, Wang X, Liu M M, Ma K Y, Wang L Q, Liu Q C, Wang C K, Jiang X, Li H, Tang Y W, Fu G T. PCTS-controlled synthesis of L10/L12-Typed Pt-Mn intermetallics for electrocatalytic oxygen reduction[J]. Adv. Funct. Mater., 2024, 34(6): 2310487.
|
[19] |
Zhang C H, Yang J H, Yang C, Hu H Y, Zhang Q, Luo G Y, Kong W J, Chen Y Q, Yang H P, Wang D L. Recent advances in confined Pt-based electrocatalysts for oxygen reduction reaction[J]. ChemCatChem, 2024, 16(21): e202400554.
|
[20] |
Song T W, Xu C, Sheng Z T, Yan H K, Tong L, Liu J, Zeng W J, Zuo L J, Yin P, Zuo M, Chu S Q, Chen P, Liang H W. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts[J]. Nat. Commun., 2022, 13(1): 6521.
|
[21] |
Wang Z X, Yao X Z, Kang Y Q, Miao L Q, Xia D S, Gan L. Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity[J]. Adv. Funct. Mater., 2019, 29(35): 1902987.
|
[22] |
Li J, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z, Shen B, Kim Y S, Zhang P, Sun S. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. J. Am. Chem. Soc., 2018, 140(8): 2926-2932.
|
[23] |
Wang D, Xin H L, Hovden R, Wang H, Yu Y, Muller D A, Disalvo F J, Abruña H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat. Mater., 2013, 12(1): 81-87.
doi: 10.1038/nmat3458
pmid: 23104154
|
[24] |
Li S, Li J J, Xu C, Zhang L, Li A, Song T W, Zhang W, Tong L, Liang H W. Multigram-scale synthesis of high-Pt-content PtCo intermetallic catalysts for proton exchange membrane fuel cells[J]. ACS Mater. Lett., 2024, 6(2): 706-712.
|
[25] |
Gong M X, Zhu J, Liu M J, Liu P F, Deng Z P, Shen T, Zhao T H, Lin R Q, Lu Y, Yang S Z, Liang Z X, Bak S M, Stavitski E, Wu Q, Adzic R R, Xin H L, Wang D L. Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization[J]. Nanoscale, 2019, 11(42): 20301-20306.
doi: 10.1039/c9nr04975d
pmid: 31633704
|
[26] |
Xu S L, Yin P, Zuo L J, Yin S Y, Zuo M, Zhang W, Fu X Z, Liang H W. Cuprous sulfide intermediate assisted synthesis of PtCu3 intermetallic electrocatalysts in multigram scale for oxygen reduction[J]. Inorg. Chem. Front., 2023, 10(11): 3359-3366.
|
[27] |
Zhao T, Luo E G, Li Y, Wang X, Liu C P, Xing W, Ge J J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction[J]. Sci. Chin. Mater., 2021, 64(7): 1671-1678.
|
[28] |
Zhang L B, Ji X D, Wang X R, Fu Y Q, Zhu H, Liu T X. Chemically ordered Pt-Co-Cu/C as excellent electrochemical catalyst for oxygen reduction reaction[J]. J. Electrochem. Soc., 2020, 167(2): 024507.
|
[29] |
Qin J Y, Zou P C, Zhang R, Wang C Y, Yao L B, Xin H L L. Pt-Fe-Cu ordered intermetallics encapsulated with N-doped carbon as high-performance catalysts for oxygen reduction reaction[J]. ACS Sustain. Chem. Eng., 2022, 10(42): 14024-14033.
|
[30] |
Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, Nørskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angew. Chem. Int. Ed., 2006, 45(18): 2897-2901.
|
[31] |
Gong M X, Deng Z P, Xiao D D, Han L L, Zhao T H, Lu Y, Shen T, Liu X P, Lin R Q, Huang T, Zhou G W, Xin H L, Wang D L. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst[J]. ACS Catal., 2019, 9(5): 4488-4494.
|
[32] |
Jin H, Xu Z W, Hu Z Y, Yin Z W, Wang Z, Deng Z, Wei P, Feng S H, Dong S H, Liu J F, Luo S C, Qiu Z D, Zhou L, Mai L Q, Su B L, Zhao D Y, Liu Y. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction[J]. Nat. Commun., 2023, 14(1): 1518-1528.
|
[33] |
Chen J X, Dong J B, Huo J L, Li C Z, Du L, Cui Z M, Liao S J. Ultrathin Co-N-C layer modified Pt-Co intermetallic nanoparticles leading to a high-performance electrocatalyst toward oxygen reduction and methanol oxidation[J]. Small, 2023, 19(37): 2301337.
|
[34] |
Li M X, Cai Y D, Zhang J J, Sun H X, Li Z, Liu Y J, Zhang X, Dai X P, Gao F, Song W Y. Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation[J]. Nano Res., 2022, 15(4): 3230-3238.
|
[35] |
Hu Y Z, Guo X Y, Shen T, Zhu Y, Wang D L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction[J]. ACS Catal., 2022, 12(9): 5380-5387.
|
[36] |
Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343.
doi: 10.1126/science.1249061
pmid: 24578531
|
[37] |
Hu Y Z, Shen T, Zhao X R, Zhang J J, Lu Y, Shen J, Lu S F, Tu Z K, Xin H L L, Wang D L. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis[J]. Appl. Catal. B Environ., 2020, 279: 119370.
|
[38] |
Song T W, Chen M X, Yin P, Tong L, Zuo M, Chu S Q, Chen P, Liang H W. Intermetallic PtFe electrocatalysts for the oxygen reduction reaction: ordering degree-dependent performance[J]. Small, 2022, 18(31): 2202916.
|
[39] |
Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu D N, Huang X, Moylan T E, Zeng R, Kongkanand A, Escobedo F A, Brock J D, Disalvo F J, Muller D A, Abruña H D. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales[J]. PNAS, 2019, 116(6): 1974-1983.
doi: 10.1073/pnas.1815643116
pmid: 30670659
|
[40] |
Desario D Y, Disalvo F J. Ordered intermetallic Pt-Sn nanoparticles: exploring ordering behavior across the bulk phase diagram[J]. Chem. Mater., 2014, 26(8): 2750-2757.
|
[41] |
Cui M J, Yang C P, Hwang S, Yang M H, Overa S, Dong Q, Yao Y G, Brozena A H, Cullen D A, Chi M, Blum T F, Morris D, Finfrock Z, Wang X Z, Zhang P, Goncharov V G, Guo X F, Luo J, Mo Y F, Jiao F, Hu L B. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition[J]. Sci. Adv., 2022, 8(4): eabm4322.
|