[1] |
Almaraz M, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton B Z. Agriculture is a major source of NOx pollution in California[J]. Sci. Adv., 2024, 4(1): eaao3477.
|
[2] |
Fernandes C, Holz L I V, Loureiro F J A, Duarte M, Fagg D P, Mendes A. Nitrous oxide abatement and valorization in an ammonia-fueled SOFC stack - Nitric oxide and electricity production[J]. Chem. Eng. J., 2024, 502: 157921.
|
[3] |
Alves L, Holz L I V, Fernandes C, Ribeirinha P, Mendes D, Fagg D P, Mendes A. A comprehensive review of NOx and N2O mitigation from industrial streams[J]. Renew. Sust. Energ. Rev., 2022, 155: 111916.
|
[4] |
Kim H S, Kasipandi S, Kim J, Kang S H, Kim J H, Ryu J H, Bae J W. Current catalyst technology of selective catalytic reduction (SCR) for NOx removal in South Korea[J]. Catalysts, 2020, 10(1): 52.
|
[5] |
Nittoor-Veedu R, Ju X, Pumera M. Iron single atom catalysts for electrochemical ammonia synthesis: toward carbon free hydrogen storage[J]. Adv. Energy Mater., 2024: DOI:10.1002/aenm.202402205.
|
[6] |
Ouyang L, Liang J, Luo Y S, Zheng D D, Sun S J, Liu Q, Hamdy M S, Sun X P, Ying B W. Recent advances in electrocatalytic ammonia synthesis[J]. Chin. J. Catal., 2023, 50: 6-44.
doi: 10.1016/S1872-2067(23)64464-X
|
[7] |
Liang J, Chen H Y, Mou T, Zhang L C, Lin Y T, Yue L C, Luo Y S, Liu Q, Li N, Alshehri A A, Shakir I, Agboola P O, Wang Y Y, Tang B, Ma D W, Sun X P. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods[J]. J. Mater. Chem. A, 2022, 10(12): 6454-6462.
|
[8] |
Cheon S, Kim W J, Kim D Y, Kwon Y, Han J I. Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode[J]. ACS Energy Lett., 2022, 7(3): 958-965.
|
[9] |
Zhao S W, Chang M W, Liu J Y, Shi G S, Yang Y Q, Gu H L, Zhang J H, Yang C L, Tong H N, Zhu C Y, Cao K C, Li S Z, Zhang L M. Selective nitric oxide electroreduction at monodispersed transition-metal sites with atomically precise coordination environment[J]. Chem. Catal., 2023, 3(6): 100598.
|
[10] |
Qian S J, Cao H, Wang Y G, Li J. Controlling the selectivity of electrocatalytic NO Reduction through pH and potential regulation on single-atom catalysts[J]. J. Am. Chem. Soc., 2024, 146(18): 12530-12537.
|
[11] |
Shao J Q, Jing H J, Wei P F, Fu X Y, Pang L, Song Y P, Ye K, Li M R, Jiang L Z, Ma J Y, Li R T, Si R, Peng Z Q, Wang G X, Xiao J P. Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst[J]. Nat. Energy, 2023, 8(11): 1273-1283.
|
[12] |
Chai L L, Zhang L J, Wang X, Xu L Q, Han C, Li T T, Hu Y, Qian J J, Huang S M. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance[J]. Carbon, 2019, 146: 248-256.
|
[13] |
Yang J P, Zhang F Z, Chen J. Structural design and application of fiber-based electrocatalytic materials[J]. China Powder Sci. Technol., 2024, 30(4): 161-170.
|
[14] |
Qin P G, Han L Z, Zhang X W, Li M Y, Li D, Lu M H, Cai Z W. MIL-101(Fe)-derived magnetic porous carbon as sorbent for stir bar sorptive-dispersive microextraction of sulfonamides[J]. Microchim. Acta, 2021, 188(10): 340.
|
[15] |
Hu X, Li Y, Zeng G, Jia J C, Zhan H B, Wen Z H. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage[J]. ACS Nano, 2018, 12(2): 1592-1602.
|
[16] |
Alshehri S M, Alhabarah A N, Ahmed J, Naushad M, Ahamad T. An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon[J]. J. Colloid Interface Sci., 2018, 514: 1-9.
|
[17] |
Iriawan H, Andersen S Z, Zhang X, Comer B M, Barrio J, Chen P, Medford A J, Stephens I E L, Chorkendorff I, Shao-Horn Y. Methods for nitrogen activation by reduction and oxidation[J]. Nat. Rev. Methods Primers, 2021, 1(1): 56.
|
[18] |
Greczynski G, Hultman L. The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy[J]. Sci. Rep., 2021, 11(1): 11195.
doi: 10.1038/s41598-021-90780-9
pmid: 34045623
|
[19] |
Wu K S, Hu Y, Cheng Z L, Pan P, Zhang M M, Jiang L Y, Mao J T, Ni C K, Zhang Y R, Wang Z X, Gu X F, Zhang X W. Fe3C composite carbon nanofiber interlayer for efficient trapping and conversion of polysulfides in lithium-sulfur batteries[J]. J. Alloys Compd., 2020, 847: 156443.
|
[20] |
Liu X J, Chen M Y, Ma J J, Liang J Q, Li C S, Chen C J, He H B. Advances in the synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications[J]. China Powder Sci. Technol., 2024, 30: 35-45.
|
[21] |
Li Z J, Ma Q, Li Z Z, Zhang D, Sun Q J, Wang Q J, Sun H L, Wang B. Exploring the role of solvents in structural regulation during ultrasonic synthesis of Co/Ni-layered double hydroxide for oxygen evolution reaction[J]. Mater. Rep. Energy, 2024, 4(4): 100296.
|
[22] |
Wu H G, Fei G T, Gao X D, Guo X, Gong X X, Ma X L, Wang Q, Xu S H. Research progress on preparation and application of polyaniline and its composite materials[J]. China Powder Sci. Technol., 2023, 29(5): 70-80.
|
[23] |
Ma X L, Xu C G, Yang Y, Sun D, Zhao K, Lu C B, Jin P, Chong Y T, Pruksawan S, Xiao Z H, Wang F K. S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries[J]. Mater. Rep. Energy, 2024, 4(3): 100279.
|
[24] |
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
doi: 10.1103/physrevb.50.17953
pmid: 9976227
|
[25] |
Wang D D, Fan G L, Luan D Y, Guo Y, Gu X J, Lou X W. Ru-incorporation-induced phase transition in Co nanoparticles for low-concentration nitric oxide electroreduction to ammonia at low potential[J]. Adv. Mater., 2024, 36(50): 2408580.
|
[26] |
Jamadar A S, Sutar R, Patil S, Khandekar R, Yadav J B. Progress in metal oxide-based electrocatalysts for sustainable water splitting[J]. Mater. Rep. Energy, 2024, 4(3): 100283.
|
[27] |
Zhang H F, Li Y B, Cheng C Q, Zhou J, Yin P F, Wu H M, Liang Z Q, Zhang J W, Yun Q B, Wang A L, Zhu L J, Zhang B, Cao W B, Meng X M, Xia J, Yu Y F, Lu Q P. Isolated electron-rich ruthenium atoms in intermetallic compounds for boosting electrochemical nitric oxide reduction to ammonia[J]. Angew. Chem. Int. Ed., 2023, 62(4): e202213351.
|
[28] |
Ma J B, Lin S, Lin Z Q, Sun L, Lin C J. Recent advances in solar photo(electro)catalytic nitrogen fixation[J]. J. Electrochem., 2024, 30(3): 2314003.
|
[29] |
Cui Y H, Sun C N, Ding G P, Zhao M, Ge X, Zhang W, Zhu Y F, Wang Z L, Jiang Q. Synergistically tuning intermediate adsorption and promoting water dissociation to facilitate electrocatalytic nitrate reduction to ammonia over nanoporous Ru-doped Cu catalyst[J]. Sci. China Mater., 2023, 66(11): 4387-4395.
|
[30] |
Yang M S, Wei T R, He J, Liu Q, Feng L G, Li H Y, Luo J, Liu X J. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia[J]. Nano Res., 2024, 17(3): 1209-1216.
|
[31] |
Sun H, Kim H, Song S Z, Jung W. Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis[J]. Mater. Rep. Energy, 2022, 2(2): 100092.
|
[32] |
Zhang P F, Hong S H, Song N, Han Z H, Ge F, Dai G, Dong H J, Li C M. Alloy as advanced catalysts for electrocatalysis: From materials design to applications[J]. Chin. Chem. Lett., 2024, 35(6): 109073.
|