欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 论文 •    

协同硼掺杂显著提升Co-N-C催化剂的氧还原反应活性

兰畅a,b,c,d, 柏景森a,b,c,d关欣a,b,c,d, 王烁a,b,c,d, 张楠淑a,b,c,d程雨晴a,b,c,d陶金晶a,b,c,d楚宇逸a,b,c,d肖梅玲a,b,c,d,e,*刘长鹏a,b,c,d,e,*邢巍a,b,c,d,e,*   

  1. a. 中国科学院长春应用化学研究所,先进电源实验室,长春 130022,中国

    b. 中国科学技术大学,应用化学与工程学院,合肥 230026,中国

    c. 吉林省低碳化学电源重点实验室,长春 130022,中国 

    d. 中国科学院长春应用化学研究所,电分析化学国家重点实验室,长春 130022,中国 

    e. 中国科学院-香港氢能联合实验室,长春 130022,中国

  • 发布日期:2025-07-31
  • 通讯作者: 肖梅玲, 刘长鹏, 邢巍 E-mail:mlxiao@ciac.ac.cn; liuchp@ciac.ac.cn; xingwei@ciac.ac.cn

Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping

Chang Lan a,b,c,d, Jingsen Bai a,b,c,d, Xin Guan a,b,c,d, Shuo Wang a,b,c,d, Nanshu Zhang a,b,c,d, Yuqing Cheng a,b,c,d, Jinjing Tao a,b,c,d, Yuyi Chu a,b,c,d, Meiling Xiao a,b,c,d,e,*, Changpeng Liu a,b,c,d,e,*, Wei Xing a,b,c,d,e,*   

  1. a. Laboratory of Advanced Power Source, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China 

    b. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China 

    c. Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun 130022, China 

    d. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese, Academy of Sciences, Changchun 130022, China 

    e. CIAC – HKUST Joint Laboratory for Hydrogen Energy, Changchun 130022, China

  • Online:2025-07-31
  • Contact: Meiling Xiao, Changpeng Liu, Wei Xing E-mail:mlxiao@ciac.ac.cn; liuchp@ciac.ac.cn; xingwei@ciac.ac.cn

摘要: Co中心对含氧中间体的弱吸附能,是致使Co-N-C催化剂与昂贵的铂基催化剂在催化氧还原反应(ORR)中存在显著性能差异的主要原因。本研究通过硼酸铵共热解策略实现硼取代,从而对Co-N-C活性位点结构进行精准调控。反应中原位生成的NH3气体对表面进行刻蚀形成缺陷,为硼原子取代活性中心的氮原子奠定基础。精心构筑的CoB1N3活性中心可以赋予钴位点更高的电荷密度及与氧物种更强的吸附能,进而加速ORR动力学。如预期所示,所制备的Co-B/N-C催化剂展现出优于Co-N-C的ORR性能:半波电位提升40 mV,转换频率(TOF)提高五倍。该催化剂优异的ORR性能在膜电极(MEA)测试中同样显著,峰值功率密度达824 mW·cm-2,达到了目前同等条件下钴基催化剂的最高水平。本工作不仅提供了先进催化剂的设计方法,更为燃料电池应用开发了一种极具前景的非贵金属ORR电催化剂。

关键词: 氧还原反应, 质子交换膜燃料电池, 单原子催化剂, Co-N-C, 硼掺杂

Abstract: The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance disparity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction (ORR). In this work, we strategically engineer the active site structure of Co-N-C via B substitution, which is accomplished by the pyrolysis of ammonium borate. During this process, the in-situ generated NH3 gas plays a critical role in creating surface defect and boron atoms substitute nitrogen atoms in the carbon structure. The well-designed CoB1N3 active site endows Co with higher charge density and stronger adsorption energy toward oxygen species, which potentially accelerating ORR kinetics. As expected, the resulting Co-B/N-C catalyst exhibits superior ORR performance to Co-N-C counterpart, with 40 mV and fivefold enhancement in half-wave potential and turnover frequency (TOF), respectively. More importantly, the excellent ORR performance can be translated into membrane electrode assembly (MEA) test, delivering an impressive peak power density of 824 mW·cm-2, which is currently the best among Co-based catalysts under the same conditions. This work not only demonstrates an effective method for designing advanced catalysts but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.

Key words: Oxygen Reduction Reaction, PEMFC, Single-atom catalyst, Co-N-C, Boron doped