电化学(中英文) ›› 2024, Vol. 30 ›› Issue (6): 2307121. doi: 10.13208/j.electrochem.2307121
李家俊, 张伟彬*(), 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧*()
收稿日期:
2023-09-16
修回日期:
2023-09-18
接受日期:
2023-09-19
出版日期:
2024-06-28
发布日期:
2023-09-25
Jia-Jun Li, Wei-Bin Zhang*(), Xin-Yu Liu, Jing-Lei Yang, Yi Yin, Ze-Qin Yang, Xue-Jing Ma*()
Received:
2023-09-16
Revised:
2023-09-18
Accepted:
2023-09-19
Published:
2024-06-28
Online:
2023-09-25
Contact:
* Wei-Bin Zhang, Tel: (86-28) 84078940, E-mail: 摘要:
海洋占地球水资源总量的97%,地表面积的70%以上。随着化石燃料等不可再生能源的持续消耗与可再生能源的快速发展,人们对海洋资源的利用越来越重视。海洋能包括潮汐能、波浪能、温差能和盐差能等。其中盐差能是海水和淡水相互作用产生的能量,是以化学能形式存在的海洋能,这种能量较多产生在河口处。目前,压力延迟渗透技术、反电渗析技术和电容混合技术是转换盐差能的三种主要技术。本文构建了一种基于电容混合技术的新型盐差电池,使用二硫化钼和多壁碳纳米管复合物电极作为阳极,活性炭作为阴极。将两种不同离子储存机制的材料复合在一起,二硫化钼具有类似石墨烯的层状结构,层间间距约为石墨烯的两倍,是一种可以与钠离子发生插层反应的电池电极材料。多壁碳纳米管具有典型的双电层效应,放电时在其表面吸附钠离子的同时,可以帮助钠离子更快地进入二硫化钼层间,加快离子传输效率和盐差能的转换效率。对该复合材料进行物理和电化学表征,并与活性炭电极组装的盐差电池,测试其盐差能转换能力。浓度响应电压150 mV,经过一个完整的四步循环后,转换能量密度可达6.96 J·g-1。该器件原材料价格较低,并且不使用离子膜,更加环保,为转换盐差能的研究提供了一种新途径。
李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121.
Jia-Jun Li, Wei-Bin Zhang, Xin-Yu Liu, Jing-Lei Yang, Yi Yin, Ze-Qin Yang, Xue-Jing Ma. Molybdenum Disulfide and Carbon Nanotubes Composite Electrode for Electrochemical Conversion of Salinity Gradient Energy[J]. Journal of Electrochemistry, 2024, 30(6): 2307121.
[1] | Ball P. A pinch of salt[J]. Nat. Mater., 2011, 10(5): 344-344. |
[2] | Nijmeijer K, Metz S. Chapter 5 salinity gradient energy[J]. Sustainability Science and Engineering, 2010, 2(9): 95-139. |
[3] | Straub A P, Deshmukh A. Pressure-retarded osmosis for power generation from salinity gradients: is it viable?[J]. Energy Environ. Sci., 2016, 9(1): 31-48. |
[4] |
Klaysom C, Cath T Y, Depuydt T. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply[J]. Chem. Soc. Rev., 2013, 42(16): 6959-6989.
doi: 10.1039/c3cs60051c pmid: 23778699 |
[5] | Skilhagen S E, Dugstad J E, Aaberg R J. Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients[J]. Desalination, 2008, 220(1-3): 476-482. |
[6] | Thorsem T, Holt T. The potential for power production from salinity gradients by pressure retarded osmosis[J]. J. Membr. Sci., 2009, 335(1-2): 103-110. |
[7] | Logan, B E, Elimelech M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411): 313-319. |
[8] | Yip N Y, Elimelech M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis[J]. Environ. Sci. Technol., 2014, 48(18): 11002-11012. |
[9] | Yip N Y, Tiraferri A, Phillip W A, Schiffma J D, Hoover L A, Kim Y C, Elimelech M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients[J]. Environ. Sci. Technol., 2011, 45(10): 4360-4369. |
[10] | Straub A P, Yip N Y, Elimelech M. Raising the bar: Increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis[J]. Environ. Sci. Technol. Lett., 2013, 1(1): 55-59. |
[11] | Tedesco M, Cipollina A, Tamburini A, Micale G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J]. J. Membr. Sci., 2017, 522: 226-236. |
[12] | Lacey R E. Energy by reverse electrodialysis[J]. Ocean Eng., 1980, 7(1): 1-47. |
[13] | Post J W, Hamelers H V M, Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environ. Sci. Technol., 2008, 42(15): 5785-5799. |
[14] | Post J W. Blue energy: Electricity production from salinity gradients by reverse electrodialysis[D]. Netherlands: Wur Wageningen Ur, 2009. |
[15] | Veerman J, Saakes M, Metz S J, Harmsen G J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water[J]. J. Membr. Sci., 2009, 327(1-2): 136-144. |
[16] | Vermaas D A, Guler E, Saakes M. Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20(5): 170-184. |
[17] | Vermaas D A, Veerman J, Yip N Y, Elimelech M, Saakes M, Nijmeijer K. High efficiency in energy generation from salinity gradients with reverse electrodialysis[J]. ACS Sustain. Chem. Eng., 2013, 1(10): 1295-1302. |
[18] |
Jung D H, Han E D, Kim B H, Seo Y H. Ultra-thin ion exchange film on the ceramic supporter for output power improvement of reverse electrodialysis[J]. Sci Rep, 2019, 9(1): 17440-17459.
doi: 10.1038/s41598-019-54002-7 pmid: 31767917 |
[19] |
Xin W W, Zhang Z, Huang X D, Hu Y H, Zhou T, Zhu C C, Kong X Y, Jiang L, Wen L P. High-performance silk-based hybrid membranes employed for osmotic energy conversion[J]. Nat. Commun., 2019, 10(1): 3876-3885.
doi: 10.1038/s41467-019-11792-8 pmid: 31462636 |
[20] | Tan G C, Zhu X P. Polyelectrolyte‐coated copper hexacyanoferrate and bismuth oxychloride electrodes for efficient salinity gradient energy recovery in capacitive mixing[J]. Energy Technol., 2019, 8(1): 1900863-1900871. |
[21] | Zhou S, Xie L, Li X F, Huang Y A, Zhang L P, Lian, Q R, Yan M, Zeng J, Qiu B L, Liu T Y, Tang J Y, Wen L P, Jiang L, Kong B. Interfacial super-assembly of ordered mesoporous carbon-silica/AAO hybrid membrane with enhanced permselectivity for temperature- and pH- sensitive smart ion transport[J]. Angew. Chem. Int. Edit., 2021, 60(50): 26167-26176. |
[22] | Shan Z, Xin Z, Lei X, Yan J H, Miao Y, Tian Y L, Hui Z, Lei J, Biao K. Dual-functional super-assembled mesoporous carbon-titania/AAO hetero-channels for bidirectionally photo-regulated ion transport[J]. Small, 2023, 19(32): 202301038-202301049. |
[23] | Rica R, Ziano R, Salerno D, Mantegazza F, Van R R, Brogioli D. Capacitive mixing for harvesting the free energy of solutions at different concentrations[J]. Entropy, 2013, 15(12): 1388-1407. |
[24] | Marino M, Misuri L, Jiménez M L., Ahualli S, Kozynchenko O, Tennison S, Brogioli D. Modification of the surface of activated carbon electrodes for capacitive mixing energy extraction from salinity differences[J]. J. Colloid Interface Sci., 2014, 436: 146-153. |
[25] | Zhou X, Zhang W B, Li J J, Bao X, Han X F, Thenint M M, Ma X J. An electrochemical system for salinity gradient energy harvesting[J]. Energy Conv. Manag., 2022, 255: 115315-115321. |
[26] | Brogioli D, Ziano R, Rica R A, Salerno D, Kozynchenko O, Hamelers H. V M, Mantegazza F. Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference[J]. Energy Environ. Sci., 2012, 5(12): 9870-9880. |
[27] | Zhan F, Wang G, Wu T T, Dong Q, Meng Y L, Wang J R, Yang J, Li S F, Qiu J S. High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences[J]. J. Mater. Chem. A, 2017, 5(38): 20374-20380. |
[28] | Marino M, Kozynchenko O, Tennison S, Brogioli D. Capacitive mixing with electrodes of the same kind for energy production from salinity differences[J]. J. Phys.-Condes. Matter, 2016, 28(11), 114004-114013. |
[29] | Balzer C, Qing L, Wang Z G. Preferential ion adsorption in blue energy applications[J]. ACS Sustain. Chem. Eng., 2021, 9(28): 9230-9239. |
[30] | Brogioli D. Extracting renewable energy from a salinity difference using a capacitor[J]. Phys. Rev. Lett., 2009, 103(5): 058501-058504. |
[31] | Ahualli S, Fernández M M., Iglesias G., Delgado Á V., Jiménez M L. Temperature effects on energy production by salinity exchange[J]. Environ. Sci. Technol., 2014, 48(20), 12378-12385. |
[32] | Sales B B, Saakes M, Post J W, Buisman C J N, Biesheuvel P M, Hamelers H V M. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell[J]. Environ. Sci. Technol., 2010, 44(14): 5661-5665. |
[33] | Liu F, Schaetzle O, Sales B B, Saakes M, Buisman C J N., Hamelers H V M. Effect of additional charging and current density on the performance of Capacitive energy extraction based on Donnan Potential[J]. Energy Environ. Sci., 2012, 5(9): 8642-8650. |
[34] |
La M F, Pasta M, Deshazer H D, Logan B E, Cui Y. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Lett., 2011, 11(4): 1810-1813.
doi: 10.1021/nl200500s pmid: 21413685 |
[35] |
Ye M, Pasta M, Xie X, Dubrawski K L, Xu J, Liu C, Criddle C S. Charge-free mixing entropy battery enabled by low-cost electrode materials[J]. ACS Omega, 2019, 4(7): 11785-11790.
doi: 10.1021/acsomega.9b00863 pmid: 31460286 |
[36] | Ye M, Pasta M, Xie X, Cui Y, Criddle C S. Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy[J]. Energy Environ. Sci., 2014, 7(7): 2295-2300. |
[37] | Zhou S, Xie L, Zhang X, Yan M, Zeng H, Liang K, Jiang L, Kong B. Super-assembled multi-level asymmetric mesochannels for coupled accelerated dual-ion selective transport[J]. Adv. Mater., 2022, 35(7): 2208903-2208913. |
[38] | Shi Y B, Pu J B, Wang L P. Structural phase transformation in amorphous molybdenum disulfide during friction[J]. J. Phys. Chem. C, 2020, 125(1): 836-844. |
[39] | Li X L, Li T C, Huang S, Zhang J. Pam M E, Yang H Y. Controllable synthesis of two-dimensional molybdenum disulfide (MoS2) for energy-storage applications[J]. ChemSusChem, 2020, 13(6): 1379-1391. |
[40] | Guo W, Li X R, Cui L, Li Y F, Zhang H, Ni T J. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst[J]. Bioprocess. Biosyst. Eng., 2021, 45(1): 159-170. |
[41] | Shuai J, Yoo H D, Liang Y, Li Y, Yao Y, Grabow L C. Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing[J]. Mater. Res. Express, 2016, 3(6): 064001-064006. |
[42] | Li J J, Zhang W B, Zhou X, Theinet M M, Yin Y, Yang J L, Yang Z Q, Ma X J. Electrochemical conversion of salinity gradient energy via molybdenum disulfide electrode[J]. J. Electrochem. Soc., 2023, 170(2): 020518-020524. |
[43] | Wang C H, Zhang Y F. Preparation of molybdenum disulfide/graphene composite electrode and its electrochemical sodium storage performance[J]. Modern Chemical Industry, 2020, 40(4): 158-166. |
[44] | Diulus J T, Elzein R, Addou R, Herman G S. Surface chemistry of 2-propanol and O2 mixtures on SnO2(110) studied with ambient-pressure x-ray photoelectron spectroscopy[J]. J. Chem. Phys., 2020, 152(5): 054713-054721. |
[45] | Zhu H, Lai J, Arges C G, Wang Y, Zhu X. Engineering the interlayer spacing of molybdenum disulfide for efficient salinity gradient energy recovery in concentration flow cells[J]. Electrochim. Acta, 2020, 342(8): 136103-136110. |
[46] | Yoo H D, Li Y, Liang Y, Lan Y, Wang F, Yao Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage[J]. ChemNanoMat, 2016, 2(7): 688-691. |
[47] |
Lee J, Yoon H, Lee J, Kim T, Yoon J. Corrigendum: Extraction of salinity-gradient energy by a hybrid capacitive-mixing system[J]. ChemSusChem, 2018, 11(3): 638-638.
doi: 10.1002/cssc.201800084 pmid: 29424491 |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 刘芳艳, 张倩, 李玥琨, 黄丰, 王梦晔. Co1-xS-MnS@CNTs/CNFs的制备及其氧还原电催化性能[J]. 电化学(中英文), 2021, 27(3): 301-310. |
[3] | 李二岭, 杨 发, 阮明波, 宋 平, 徐维林. Fe-N共掺杂纳米碳材料的形貌对电化学还原反应的影响[J]. 电化学(中英文), 2019, 25(4): 486-496. |
[4] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
[5] | 余林颇, 陈政. 提高电容性电化学储能装置能量容量的一些尝试[J]. 电化学(中英文), 2017, 23(5): 533-547. |
[6] | 陈姿颖,武倩倩,张健青,朱英红,马淳安. 负载型离子液体在C-H键电氧化活化中的应用研究[J]. 电化学(中英文), 2017, 23(1): 1-6. |
[7] | 彭花萍, 余美玲, 刘馨, 刘盼, 陈伟, 刘爱林, 林新华*. 金纳米粒子/聚多巴胺/碳纳米管修饰玻碳电极对核黄素的测定[J]. 电化学(中英文), 2016, 22(1): 43-48. |
[8] | 廉锋, 辛永磊, 马伯江, 许立坤. 添加碳纳米管对钌铱锡氧化物阳极性能的影响[J]. 电化学(中英文), 2015, 21(4): 375-381. |
[9] | 郝亮,申来法,王婕,朱佳佳,赵笑晨,张校刚*. 碳纳米管/五氧化二钒空心球的制备及其电化学性能研究[J]. 电化学(中英文), 2015, 21(2): 152-156. |
[10] | 严乙铭,毛兰群*. 全酶型乙醇/氧气生物燃料电池的构筑及性能研究[J]. 电化学(中英文), 2015, 21(1): 8-12. |
[11] | 张云,胡劲松*,江文杰,郭琳,魏子栋*,万立骏. 通过铁掺杂和造孔提高氮掺杂石墨烯/碳纳米管复合物电催化氧还原性能的研究(英文)[J]. 电化学(中英文), 2014, 20(5): 401-409. |
[12] | 范丽丽,武丽娜,屈志宇,刘丹凤,张俊明,樊思明,樊友军*. Pt/DNA-MWCNTs/GC电极制备及其H2O2还原的电催化活性[J]. 电化学(中英文), 2014, 20(5): 459-464. |
[13] | 杜学萍,娄童芳,董莹,屈建莹*. 聚茜素红-多壁碳纳米管复合膜修饰电极的研制及叶酸含量测定[J]. 电化学(中英文), 2014, 20(5): 482-485. |
[14] | 邓春艳,范慧敏,向娟,李元建*. 基于碳纳米管的高灵敏度免标记电化学核酸适体传感电极[J]. 电化学(中英文), 2014, 20(4): 386-391. |
[15] | 彭花萍,查代君,黄郑隽,陈伟,刘爱林*,林新华*. 二茂铁功能化Fe3O4/碳纳米管/壳聚糖复合膜葡萄糖生物传感电极的研究[J]. 电化学(中英文), 2014, 20(1): 33-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||