电化学(中英文) ›› 2024, Vol. 30 ›› Issue (6): 2314005. doi: 10.61558/2993-074X.3445
方建军a,b,#, 杜宇豪a,#, 李子健a,#, 樊文光a,*(), 任恒宇a, 易浩聪a, 赵庆贺a,*(), 潘锋a,*()
收稿日期:
2023-12-21
修回日期:
2024-01-26
接受日期:
2024-01-26
出版日期:
2024-06-28
发布日期:
2024-02-21
Jian-Jun Fanga,b,#, Yu-Hao Dua,#, Zi-Jian Lia,#, Wen-Guang Fana,*(), Heng-Yu Rena, Hao-Cong Yia, Qing-He Zhaoa,*(), Feng Pana,*()
Received:
2023-12-21
Revised:
2024-01-26
Accepted:
2024-01-26
Published:
2024-06-28
Online:
2024-02-21
Contact:
* Hao-Cong Yi, Tel: (86-755)26612204; E-mail: About author:
# Jian-Jun Fang, Yu-Hao Du, and Zi-Jian Li contribute equally to this work.
摘要:
近年来,高电压LiCoO2(LCO)正极的研发成为学术界和工业界广泛关注的焦点。研究表明,解决表面问题是提升高电压LCO性能的最有效途径。本综述系统回顾了高电压LCO所面临的问题,包括相变和裂纹的生成、与氧氧化还原相关的问题以及副反应,以及表面结构的退化。接着,我们深入阐述了表面调制,以及表面调制与电解质调制之间的相互作用。最后,我们展望了更先进的LCO正极的发展前景,包括低成本高质量的制造,设计适用于极端条件(如高温、高速充电、低温等)的LCO正极,并实现约220 mAh·g-1的稳定容量释放。我们期望这项工作能为未来推动高电压LCO的发展和应用提供参考。
方建军, 杜宇豪, 李子健, 樊文光, 任恒宇, 易浩聪, 赵庆贺, 潘锋. 高电压LiCoO2的表面结构与性能:回顾与展望[J]. 电化学(中英文), 2024, 30(6): 2314005.
Jian-Jun Fang, Yu-Hao Du, Zi-Jian Li, Wen-Guang Fan, Heng-Yu Ren, Hao-Cong Yi, Qing-He Zhao, Feng Pan. Surface Structures and Properties of High-Voltage LiCoO2: Reviews and Prospects[J]. Journal of Electrochemistry, 2024, 30(6): 2314005.
[1] | Lin C, Li J Y, Yin Z W, Huang W Y, Zhao Q H, Weng Q S, Liu Q, Sun J L, Chen G H, Pan F. Structural understanding for high-voltage stabilization of lithium cobalt oxide[J]. Adv. Mater., 2023: 2307404. |
[2] | Ren H Y, Zhao W G, Yi H C, Chen Z F, Ji H C, Jun Q, Ding W Y, Li Z J, Shang M J, Fang J J, Li K, Zhang M J, Li S N, Zhao Q H, Pan F. One-step sintering synthesis achieving multiple structure modulations for high-voltage LiCoO2[J]. Adv. Funct. Mater., 2023, 33(38): 2302622. |
[3] | Lyu Y C, Wu X, Wang K, Feng Z J, Cheng T, Liu Y, Wang M, Chen R M, Xu L M, Zhou J J, Lu Y H, Guo B K. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Adv. Energy Mater., 2021, 11(2): 2000982. |
[4] | Yu X R, Hu X L. Interface engineering by gelling sulfolane for durable and safe Li/LiCoO2 batteries in wide temperature range[J]. Sci. China-Mater., 2022, 65(11): 2967-2974. |
[5] | Liu Y T, Wang L, Liu S, Li G R, Gao X P. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery[J]. Sci. China-Mater., 2021, 64(6): 1343-1354. |
[6] | Konar R, Maiti S, Shpigel N, Aurbach D. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55v[J]. Energy Stor. Mater., 2023, 63: 103001. |
[7] | Qin R Z, Ding S X, Hou C X, Liu L L, Wang Y T, Zhao W G, Yao L, Shao Y L, Zou R Q, Zhao Q H, Li S N, Pan F. Modulating the proton-conducting lanes in spinel ZnMn2O4through off-stoichiometry[J]. Adv. Energy Mater., 2023, 13(20): 2203915. |
[8] | Qian H M, Ren H Q, Zhang Y, He X F, Li W B, Wang J J, Hu J H, Yang H, Sari H M K, Chen Y, Li X F. Surface doping vs. Bulk doping of cathode materials for lithium-ion batteries: A review[J]. Electrochem. Energy Rev., 2022, 5(4): 2. |
[9] | Huang W Y, Zhao Q, Zhang M J, Xu S Y, Xue H Y, Zhu C, Fang J J, Zhao W G, Ren G X, Qin R Z, Zhao Q H, Chen H B, Pan F. Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2[J]. Adv. Energy Mater., 2022, 12(20): 2200813. |
[10] | Zhang S D, Qi M Y, Guo S J, Sun Y G, Tan X X, Ma P Z, Li J Y, Yuan R Z, Cao A M, Wan L J. Advancing to 4.6 v review and prospect in developing high-energy-density LiCoO2 cathode for lithium-ion batteries[J]. Small Methods, 2022, 6(5): 2200148. |
[11] | Xu S Y, Tan X H, Ding W Y, Ren W J, Zhao Q, Huang W Y, Liu J J, Qi R, Zhang Y X, Yang J C, Zuo C J, Ji H C, Ren H Y, Cao B, Xue H Y, Gao Z H, Yi H C, Zhao W G, Xiao Y G, Zhao Q H, Zhang M J, Pan F. Promoting surface electric conductivity for high-rate LiCoO2[J]. Angew. Chem. Int. Ed., 2023, 62(10): e202218595. |
[12] |
Wu Q, Zhang B, Lu Y Y. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. J. Energy Chem., 2022, 74: 283-308.
doi: 10.1016/j.jechem.2022.07.007 |
[13] | Zhang N, Wang B, Jin F, Chen Y, Jiang Y P, Bao C Y, Tian J Y, Wang J Y, Xu R Y, Li Y H, Lv Q, Ren H Z, Wang D L, Liu H K, Dou S X, Hong X. Modified cathode-electrolyte interphase toward high-performance batteries[J]. Cell Rep. Phys. Sci., 2022, 3(12): 101197. |
[14] | Liang L W, Zhang W H, Zhao F, Denis D K, Zaman F U, Hou L R, Yuan C Z. Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: Fundamental mechanisms and remedying strategies[J]. Adv. Mater. Interfaces, 2020, 7(3): 1901749. |
[15] | Li Z J, Yi H C, Ding W Y, Ren H Y, Du Y H, Shang M J, Zhao W G, Chen H, Zhou L, Lin H, Zhao Q H, Pan F. Revealing the accelerated capacity decay of a high-voltage LiCoO2 upon harsh charging procedure[J]. Adv. Funct. Mater., 2023, n/a(n/a): 2312837. |
[16] | Zhang J Y, Gai J J, Song K M, Chen W H. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells[J]. Cell Rep. Phys. Sci., 2022, 3(5): 100868. |
[17] | He W, Guo W B, Wu H L, Lin L, Liu Q, Han X, Xie Q S, Liu P F, Zheng H F, Wang L S, Yu X Q, Peng D L. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Adv. Mater., 2021, 33(50): 2005937. |
[18] | Maleki Kheimeh Sari H, Li X. Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: A review[J]. Adv. Energy Mater., 2019, 9(39): 1901597. |
[19] | Chen J K, Lin Z Y, Xiang W J, Wu B H, Zhang G G, Wen X Y, Che Y X, Ruan D G, Li W S, Chen M. Investigation of degradation mechanism of LiCoO2/graphite batteries with multiscale characterization[J]. Electrochim. Acta, 2022, 436: 141374. |
[20] | Wu Z X, Zeng G F, Yin J H, Chiang C L, Zhang Q H, Zhang B D, Chen J K, Yan Y W, Tang Y L, Zhang H T, Zhou S Y, Wang Q S, Kuai X X, Lin Y G, Gu L, Qiao Y, Sun S G. Unveiling the evolution of LiCoO2 beyond 4.6 v[J]. ACS Energy Lett., 2023, 8(11): 4806-4817. |
[21] | Li S, Sun Y, Gao A, Zhang Q H, Lu X Y, Lu X. Sustainable LiCoO2 by collective glide of coo6 slabs upon charge/discharge[J]. Proc. Natl. Acad. Sci., 2022, 119(20): e2120060119. |
[22] | Jiang Y Y, Qin C D, Yan P F, Sui M L. Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling[J]. J. Mater. Chem. A, 2019, 7(36): 20824-20831. |
[23] |
Duffiet M, Blangero M, Cabelguen P E, Delmas C, Carlier D. Influence of the initial Li/Co ratio in LiCoO2 on the high-voltage phase-transitions mechanisms[J]. J. Phys. Chem. Lett., 2018, 9(18): 5334-5338.
doi: 10.1021/acs.jpclett.8b02252 pmid: 30152232 |
[24] | Liu Q, Su X, Lei D, Qin Y, Wen J G, Guo F M, Wu Y M A, Rong Y C, Kou R H, Xiao X H, Aguesse F, Bareño J, Ren Y, Lu W Q, Li Y X. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nat. Energy, 2018, 3(11): 936-943. |
[25] | Jiang Y Y, Yan P F, Yu M C, Li J M, Jiao H, Zhou B, Sui M L. Atomistic mechanism of cracking degradation at twin boundary of LiCoO2[J]. Nano Energy, 2020, 78: 105364. |
[26] | Kim D, Hwang J, Byeon P, Kim W, Kang D G, Bae H B, Lee S G, Han S M, Lee J, Chung S Y. Direct probing of lattice-strain-induced oxygen release in LiCoO2 and Li2MnO3 without electrochemical cycling[J]. Adv. Mater., 2023, 35(29): 2212098. |
[27] | Jena A, Lee P H, Pang W K, Hsiao K C, Peterson V K, Darwish T, Yepuri N, Wu S H, Chang H, Liu R S. Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in-situ neutron diffraction technique[J]. J. Chin. Chem. Soc., 2020, 67(3): 344-352. |
[28] | Ding S X, Zhang M Z, Qin R Z, Fang J J, Ren H Y, Yi H C, Liu L L, Zhao W G, Li Y, Yao L, Li S N, Zhao Q H, Pan F. Oxygen-deficient β-Mno2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries[J]. Nanomicro Lett, 2021, 13(1): 173. |
[29] | Hitt A, Wang F, Li Z, Ge M, Zhang Y, Savsatli Y, Xiao X, Lee W K, Stephens R, Tang M. Nanotomographic observation and statistical analysis of overcharging induced cracks in LiCoO2 single crystalline particles[J]. Energy Stor. Mater., 2022, 52: 320-328. |
[30] | Xu Y H, Hu E Y, Zhang K, Wang X L, Borzenets V, Sun Z H, Pianetta P, Yu X Q, Liu Y J, Yang X Q, Li H. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates[J]. ACS Energy Lett., 2017, 2(5): 1240-1245. |
[31] | Zhu Y M, Wu D J, Yang X M, Zeng L Y, Zhang J, Chen D L, Wang B, Gu M. Microscopic investigation of crack and strain of LiCoO2 cathode cycled under high voltage[J]. Energy Stor. Mater., 2023, 60: 102828. |
[32] | Oh J, Lee S Y, Kim H, Ryu J, Gil B, Lee J, Kim M. Overcharge-induced phase heterogeneity and resultant twin-like layer deformation in lithium cobalt oxide cathode for lithium-ion batteries[J]. Adv. Sci., 2022, 9(32): 2203639. |
[33] | Yaqoob N, Mücke R, Guillon O, Kaghazchi P. Delithiation-induced oxygen vacancy formation increases microcracking of LiCoO2 cathodes[J]. J. Power Sources, 2022, 533: 231316. |
[34] | He Y F, Wang L, Zhang B, Pham H, Xu H, Park J, He X M. Atomic-scale insight into the lattice volume plunge of LixCoO2 upon deep delithiation[J]. Energy Advances, 2023, 2(1): 103-112. |
[35] | Hu E Y, Li Q H, Wang X L, Meng F Q, Liu J, Zhang J N, Page K, Xu W Q, Gu L, Xiao R J, Li H, Huang X J, Chen L Q, Yang W L, Yu X Q, Yang X Q. Oxygen-redox reactions in LiCoO2 cathode without O-O bonding during charge-discharge[J]. Joule, 2021, 5(3): 720-736. |
[36] | Geng F S, Shen M, Hu B, Liu Y F, Zeng L C, Hu B W. Monitoring the evolution of local oxygen environments during LiCoO2 charging via ex situ 17O NMR[J]. Chem. Commun., 2019, 55(52): 7550-7553. |
[37] | Li C F, Zhao K, Liao X, Hu Z Y, Zhang L, Zhao Y, Mu S, Li Y, Li Y, Van Tendeloo G, Sun C. Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes[J]. Energy Stor. Mater., 2021, 36: 115-122. |
[38] | Hu T, Dai F Z, Zhou G, Wang X, Xu S. Unraveling the dynamic correlations between transition metal migration and the oxygen dimer formation in the highly delithiated LixCoO2 cathode[J]. J. Phys. Chem. Lett., 2023, 14(15): 3677-3684. |
[39] | Sun C L, Liao X B, Xia F J, Zhao Y, Zhang L, Mu S, Shi S, Li Y X, Peng H Y, Van Tendeloo G, Zhao K N, Wu J S. High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: Cation loss and oxygen release driven by oxygen vacancy migration[J]. ACS Nano, 2020, 14(5): 6181-6190. |
[40] | Lu W, Zhang J S, Xu J J, Wu X D, Chen L W. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Appl. Mater. Interfaces, 2017, 9(22): 19313-19318. |
[41] |
Rinkel B L D, Hall D S, Temprano I, Grey C P. Electrolyte oxidation pathways in lithium-ion batteries[J]. J. Am. Chem. Soc., 2020, 142(35): 15058-15074.
doi: 10.1021/jacs.0c06363 pmid: 32697590 |
[42] |
Li J Y, Lin C, Weng M Y, Qiu Y, Chen P H, Yang K, Huang W Y, Hong Y X, Li J, Zhang M J, Dong C, Zhao W G, Xu Z, Wang X, Xu K, Sun J L, Pan F. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nat. Nanotechnol., 2021, 16(5): 599-605.
doi: 10.1038/s41565-021-00855-x pmid: 33619408 |
[43] |
Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z. First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy[J]. Angew. Chem. Int. Ed., 2012, 51(46): 11597-11601.
doi: 10.1002/anie.201203910 pmid: 23065948 |
[44] | Kikkawa J, Terada S, Gunji A, Nagai T, Kurashima K, Kimoto K. Chemical states of overcharged LiCoO2 particle surfaces and interiors observed using electron energy-loss spectroscopy[J]. J. Phys. Chem. C, 2015, 119(28): 15823-15830. |
[45] | Qin C D, Jiang Y Y, Yan P F, Sui M L. Revealing the minor Li-ion blocking effect of LiCoO2surface phase transition layer[J]. J. Power Sources, 2020, 460: 228126. |
[46] | Yano A, Shikano M, Ueda A, Sakaebe H, Ogumi Z. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating[J]. J. Electrochem. Soc., 2017, 164(1): A6116. |
[47] |
Seong W M, Yoon K, Lee M H, Jung S K, Kang K. Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8 V cutoff voltage through subtractive surface modification for lithium-ion batteries[J]. Nano Lett., 2019, 19(1): 29-37.
doi: 10.1021/acs.nanolett.8b02902 pmid: 30365316 |
[48] | Li S, Li K L, Zheng J Y, Zhang Q H, Wei B, Lu X. Structural distortion-induced charge gradient distribution of Co ions in delithiated LiCoO2 cathode[J]. J. Phys. Chem. Lett., 2019, 10(24): 7537-7546. |
[49] | Hirooka M, Sekiya T, Omomo Y, Yamada M, Katayama H, Okumura T, Yamada Y, Ariyoshi K. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures[J]. Electrochim. Acta, 2019, 320: 134596. |
[50] | Wang K, Zhang Z, Ding Y, Cheng S, Xiao B, Sui M, Yan P. Surface facet dependent cycling stability of layered cathodes[J]. Adv. Funct. Mater., 2023, 33(37): 2302023. |
[51] | Zhang J N, Li Q, Wang Y, Zheng J, Yu X, Li H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode[J]. Energy Stor. Mater., 2018, 14: 1-7. |
[52] | Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell[J]. Chem. Mater., 2000, 12(12): 3788-3791. |
[53] | Cho J, Kim Y J, Park B. LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase[J]. J. Electrochem. Soc., 2001, 148(10): A1110. |
[54] | Jian Z L, Wang W T, Wang M Y, Wang Y, AuYeung N, Liu M, Feng Z X. Al2O3 coated LiCoO2 as cathode for high-capacity and long-cycling Li-ion batteries[J]. Chin. Chem. Lett., 2018, 29(12): 1768-1772. |
[55] | Wang Z X, Wu C A, Liu L J, Wu F, Chen L Q, Huang X J. Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries[J]. J. Electrochem. Soc., 2002, 149(4): A466. |
[56] | Shim J H, Lee S, Park S S. Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery[J]. Chem. Mater., 2014, 26(8): 2537-2543. |
[57] | Yamamoto K, Orikasa Y, Takamatsu D, Koyama Y, Mori S, Masese T, Mori T, Minato T, Tanida H, Uruga T, Ogumi Z, Uchimoto Y. Stabilization of the electronic structure at the cathode/electrolyte interface via MgO ultra-thin layer during lithium-ions insertion/extraction[J]. Electrochemistry, 2014, 82(10): 891-896. |
[58] | Han B, Paulauskas T, Key B, Peebles C, Park J S, Klie R F, Vaughey J T, Dogan F. Understanding the role of temperature and cathode composition on interface and bulk: Optimizing aluminum oxide coatings for Li-ion cathodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(17): 14769-14778. |
[59] |
Xiao B, Tang Q C, Dai X Y, Wu F Z, Chen H J, Li J Z, Mai Y, Gu Y J. Enhanced interfacial kinetics and high rate performance of LiCoO2 thin-film electrodes by Al doping and in situ Al2O3 coating[J]. ACS Omega, 2022, 7(35): 31597-31606.
doi: 10.1021/acsomega.2c04665 pmid: 36092563 |
[60] |
Kim A, Won Y, Woo K, Kim C H, Moon J. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells[J]. ACS Nano, 2013, 7(2): 1081-1091.
doi: 10.1021/nn305491x pmid: 23330971 |
[61] | Fu Q Y, Hao S, Shen B, Duan X B, Na H C. Preparation and optical-electrical properties of Al-doped ZnO films[J]. Res. Chem. Intermed., 2013, 39(2): 527-536. |
[62] | Shen B, Zuo P J, Li Q, He X S, Yin G P, Ma Y L, Cheng X Q, Du C Y, Gao Y Z. Lithium cobalt oxides functionalized by conductive Al-doped ZnO coating as cathode for high-performance lithium ion batteries[J]. Electrochim. Acta, 2017, 224: 96-104. |
[63] | Zhou A J, Lu Y T, Wang Q J, Xu J, Wang W H, Dai X Y, Li J Z. Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance[J]. J. Power Sources, 2017, 346: 24-30. |
[64] | Yang Q, Huang J, Li Y J, Wang Y, Qiu J L, Zhang J N, Yu H G, Yu X Q, Li H, Chen L Q. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries[J]. J. Power Sources, 2018, 388: 65-70. |
[65] | Li Z, Li A, Zhang H, Ning F, Li W, Zangiabadi A, Cheng Q, Borovilas J J, Chen Y, Zhang H, Xiao X, Ouyang C, Huang X, Lee W K, Ge M, Chu Y S, Chuan X, Yang Y. Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating[J]. Energy Stor. Mater., 2020, 29: 71-77. |
[66] | Wei J, Ji Y X, Liang D, Chen B, Jiang C, Li X T. Anticorrosive nanosized LiF thin film coating for achieving long-cycling stability of LiCoO2 at high voltages[J]. Ceram. Int., 2022, 48(7): 10288-10298. |
[67] | Mao S L, Shen Z Y, Zhang W D, Wu Q, Wang Z Y, Lu Y Y. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries[J]. Adv. Sci., 2022, 9(11): 2104841. |
[68] | Fan T, Kai W, Harika V K, Liu C, Nimkar A, Leifer N, Maiti S, Grinblat J, Tsubery M N, Liu X, Wang M, Xu L, Lu Y, Min Y, Shpigel N, Aurbach D. Operating highly stable LiCoO2 cathodes up to 4.6 V by using an effective integration of surface engineering and electrolyte solutions selection[J]. Adv. Funct. Mater., 2022, 32(33): 2204972. |
[69] | Wang X, Wu Q, Li S Y, Tong Z M, Wang D, Zhuang H L L, Wang X Y, Lu Y Y. Lithium-aluminum-phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond[J]. Energy Stor. Mater., 2021, 37: 67-76. |
[70] | Ye B, Cai M Z, Xie M, Dong H, Dong W J, Huang F Q. Constructing robust cathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under -25 °C[J]. ACS Appl Mater Interfaces, 2022, 14(17): 19561-19568. |
[71] | Yang X R, Wang C W, Yan P F, Jiao T P, Hao J L, Jiang Y Y, Ren F C, Zhang W G, Zheng J M, Cheng Y, Wang X S, Yang W, Zhu J P, Pan S Y, Lin M, Zeng L Y, Gong Z L, Li J T, Yang Y. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Adv. Energy Mater., 2022, 12(23): 2200197. |
[72] | Zhuang Z F, Wang J X, Jia K, Ji G L, Ma J, Han Z Y, Piao Z H, Gao R H, Ji H C, Zhong X W, Zhou G M, Cheng H M. Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification[J]. Adv. Mater., 2023, 35(22): 2212059. |
[73] | Dong W J, Ye B, Cai M Z, Bai Y Z, Xie M, Sun X Z, Lv Z R, Huang F Q. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries[J]. ACS Energy Lett., 2023, 8(2): 881-888. |
[74] | Pu W, Meng Y, Wang Y J, Ge Y C, Li X P, Wang P F, Zhang Z K, Guo Y, Xiao D. Investigation of the LiBH4 modification effect on cycling stability and high-rate capacity of LiCoO2 cathodes[J]. ACS Appl. Energy Mater., 2021, 4(7): 6933-6941. |
[75] | Chen J, Chen H Y, Zhang S, Dai A, Li T Y, Mei Y, Ni L S, Gao X, Deng W T, Yu L, Zou G Q, Hou H S, Dahbi M, Xu W Q, Wen J G, Alami J, Liu T C, Amine K, Ji X B. Structure/interface coupling effect for high-voltage LiCoO2 cathodes[J]. Adv. Mater., 2022, 34(42): 2204845. |
[76] | Zhu Z, Wang H, Li Y, Gao R, Xiao X H, Yu Q P, Wang C, Waluyo I, Ding J X, Hunt A, Li J. A surface Se-substituted LiCo[O2-δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells[J]. Adv. Mater., 2020, 32(50): 2005182. |
[77] | Fu A, Zhang Z F, Lin J D, Zou Y, Qin C D, Xu C J, Yan P F, Zhou K, Hao J L, Yang X R, Cheng Y, Wu D Y, Yang Y, Wang M S, Zheng J M. Highly stable operation of LiCoO2 at cut-off ≥ 4.6 V enabled by synergistic structural and interfacial manipulation[J]. Energy Stor. Mater., 2022, 46: 406-416. |
[78] | Seong W M, Cho K H, Park J W, Park H, Eum D, Lee M H, Kim I S S, Lim J, Kang K. Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2020, 59(42): 18662-18669. |
[79] | Kim J, Lee J, Bae C, Kang B. Sublimation-induced gas-reacting process for high-energy-density Ni-rich electrode materials[J]. ACS Appl. Mater. Interfaces, 2020, 12(10): 11745-11752. |
[80] | Du F H, Fan Z X, Ding L, Wang Y, Shi W J, Zhang J, Qu H Y, Yu X X, Chen Y L, Zheng J W. Surface engineering based on element interdiffusion and interfacial reactions to boost the performance of LiCoO2 cathode material[J]. Chem. Eng. J., 2023, 474: 145952. |
[81] | Qian J W, Liu L, Yang J X, Li S Y, Wang X, Zhuang H L L L, Lu Y Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries[J]. Nat. Commun., 2018, 9(1): 4918. |
[82] | Li Z J, Yi H C, Ren H Y, Fang J J, Du Y H, Zhao W G, Chen H, Zhao Q H, Pan F. Multiple surface optimizations for a highly durable LiCoO2beyond 4.6 V[J]. Adv. Funct. Mater., 2023, 33(46): 2307913. |
[83] | Wang Y, Zhang Q H, Xue Z C, Yang L F, Wang J Y, Meng F Q, Li Q H, Pan H Y, Zhang J N, Jiang Z, Yang W L, Yu X Q, Gu L, Li H. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Adv. Energy Mater., 2020, 10(28): 2001413. |
[84] | Li Y, Zan M W, Chen P H, Huang Y L, Xu X L, Zhang C Z, Cai Z Y, Yu X Q, Li H. Facile solid-state synthesis to in situ generate a composite coating layer composed of spinel-structural compounds and Li3PO4 for stable cycling of LiCoO2 at 4.6 V[J]. ACS Appl. Mater. Interfaces, 2023, 15(44): 51262-51273. |
[85] | Li M Y, Bai F Y, Yao Q, Wang H C, Li P. Double function-layers construction strategy promotes the cycling stability of LiCoO2 under high temperature and high voltage[J]. Electrochim. Acta, 2023, 449: 142197. |
[86] | Tan X H, Mao D D, Zhao T Q, Zhang Y X, Song L T, Fan Z W, Liu G Y, Wang H F, Chu W G. Long-term highly stable high-voltage LiCoO2 synthesized via a solid sulfur-assisted one-pot approach[J]. Small, 2022, 18(26): 2202143. |
[87] | Tan X H, Zhao T Q, Song L T, Mao D D, Zhang Y X, Fan Z W, Wang H F, Chu W G. Simultaneous near-surface trace doping and surface modifications by gas-solid reactions during one-pot synthesis enable stable high-voltage performance of LiCoO2[J]. Adv. Energy Mater., 2022, 12(30): 2200008. |
[88] | Zhang Q Y, Ma J L, Mei L, Liu J, Li Z Y, Li J, Zeng Z Y. In situ tem visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries[J]. Matter, 2022, 5(4): 1235-1250. |
[89] | Yan Y W, Zheng Y C, Zhang H T, Chen J K, Zeng G F, Wang L L, Zhang B D, Zhou S Y, Tang Y L, Fu A, Zheng L R, Huang H, Zou Y, Wang C W, Kuai X X, Sun Y, Qiao Y, Sun S G. Blending layered cathode with olivine: An economic strategy for enhancing the structural and thermal stability of 4.65 V LiCoO2[J]. Adv. Funct. Mater., 2023, 33(43): 2304496. |
[90] | Liu J X, Wang J Q, Ni Y X, Liu J D, Zhang Y D, Lu Y, Yan Z H, Zhang K, Zhao Q, Cheng F Y, Chen J. Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating[J]. Angew. Chem. Int. Ed., 2022, 61(35): e202207000. |
[91] | Wang L L, Ma J, Wang C, Yu X R, Liu R, Jiang F, Sun X W, Du A B, Zhou X H, Cui G L. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J]. Adv. Sci., 2019, 6(12): 1900355. |
[92] | Zhang W, Cheng F Y, Chang M, Xu Y, Li Y Y, Sun S X, Wang L, Xu L M, Li Q, Fang C, Wang M, Lu Y H, Han J T, Huang Y H. Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2[J]. Nano Energy, 2024, 119: 109031. |
[93] | Ye B, Cai M Z, Xie M, Dong H, Dong W J, Huang F Q. Constructing robust vathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under -25 °C[J]. ACS Appl. Mater. Interfaces, 2022, 14(17): 19561-19568. |
[94] | Wang F M, Chemere E B, Chien W C, Chen C L, Hsu C C, Yeh N H, Wu Y S, Khotimah C, Guji K W, Merinda L. In situ Co-O bond reinforcement of the artificial cathode electrolyte interphase in highly delithiated LiCoO2 for high-energy-density applications[J]. ACS Appl. Mater. Interfaces, 2021, 13(39): 46703-46716. |
[95] | Zhou H, Izumi J, Asano S, Ito K, Watanabe K, Suzuki K, Nemoto F, Yamada N L, Aso K, Oshima Y, Kanno R, Hirayama M. Fast lithium intercalation mechanism on surface-modified cathodes for lithium-ion batteries[J]. Adv. Energy Mater., 2023, 13(44): 2370183. |
[96] | Zhang Y, Katayama Y, Tatara R, Giordano L, Yu Y, Fraggedakis D, Sun J G, Maglia F, Jung R, Bazant M Z, Shao-Horn Y. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ fourier transform infrared spectroscopy[J]. Energy Environ. Sci., 2020, 13(1): 183-199. |
[97] |
Fan X L, Wang C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chem. Soc. Rev., 2021, 50(18): 10486-10566.
doi: 10.1039/d1cs00450f pmid: 34341815 |
[98] | Freiberg A T S, Sicklinger J, Solchenbach S, Gasteiger H A. Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities[J]. Electrochim. Acta, 2020, 346: 136271. |
[99] | Shi C G, Shen C H, Peng X X, Luo C X, Shen L F, Sheng W J, Fan J J, Wang Q, Zhang S J, Xu B B, Xian J J, Wei Y M, Huang L, Li J T, Sun S G. A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: Green and simple additive[J]. Nano Energy, 2019, 65: 104084. |
[100] | Bizuneh G G, Zhu C L, Huang J D, Wang H P, Qi S H, Wang Z S, Wu D X, Ma J M,. Constructing highly Li+ conductive electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries via electrolyte additive engineering[J]. Small Methods, 2023, 7(9): 2300079. |
[101] | Solchenbach S, Metzger M, Egawa M, Beyer H, Gasteiger H A. Quantification of PF5 and POF3 from side reactions of LiPF6 in Li-ion batteries[J]. J. Electrochem. Soc., 2018, 165(13): A3022. |
[102] | Yan Y W, Weng S T, Fu A, Zhang H T, Chen J K, Zheng Q Z, Zhang B D, Zhou S Y, Yan H, Wang C A W, Tang Y L, Luo H Y, Mao B W, Zheng J W, Wang X F, Qiao Y, Yang Y, Sun S G. Tailoring electrolyte dehydrogenation with trace additives: Stabilizing the LiCoO2 cathode beyond 4.6 V[J]. ACS Energy Lett., 2022, 7(8): 2677-2684. |
[103] | Tebbe J L, Fuerst T F, Musgrave C B. Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species[J]. ACS Appl. Mater. Interfaces, 2016, 8(40): 26664-26674. |
[104] | Guo K L, Zhu C L, Wang H P, Qi S H, Huang J D, Wu D X, Ma J M. Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries[J]. Adv. Energy Mater., 2023, 13(20): 2204272. |
[105] | Xing L D, Li W S, Xu M Q, Li T T, Zhou L. The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery[J]. J. Power Sources, 2011, 196(16): 7044-7047. |
[106] | Yang X R, Lin M, Zheng G R, Wu J, Wang X S, Ren F C, Zhang W G, Liao Y, Zhao W M, Zhang Z R, Xu N B, Yang W L, Yang Y. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy[J]. Adv. Funct. Mater., 2020, 30(43): 2004664. |
[107] | Sun Z Y, Li F K, Ding J Y, Lin Z Y, Xu M Q, Zhu M, Liu J. High-voltage and high-temperature LiCoO2 operation via the electrolyte additive of electron-defect boron compounds[J]. ACS Energy Lett., 2023, 8(6): 2478-2487. |
[108] | Liu J D, Wu M G, Li X, Wu D X, Wang H P, Huang J D, Ma J M. Amide-functional, Li3N/LiF-rich heterostructured electrode eectrolyte interphases for 4.6 V Li||LiCoO2 batteries[J]. Adv. Energy Mater., 2023, 13(15): 2300084. |
[109] | Fu A, Lin J D, Zhang Z F, Xu C J, Zou Y, Liu C Y, Yan P F, Wu D Y, Yang Y, Zheng J M. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li∥LiCoO2 batteries by potassium selenocyanate (KSeCN) additive[J]. ACS Energy Lett., 2022, 7(4): 1364-1373. |
[110] | Yang J X, Liu X, Wang Y A, Zhou X W, Weng L T, Liu Y Z, Ren Y, Zhao C, Dahbi M, Alami J, Ei-Hady D A, Xu G L, Amine K, Shao M H. Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries[J]. Adv. Energy Mater., 2021, 11(39): 2101956. |
[111] | Zhang J X, Wang P F, Bai P X, Wan H L, Liu S F, Hou S, Pu X J, Xia J L, Zhang W R, Wang Z Y, Nan B, Zhang X Y, Xu J J, Wang C S. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode[J]. Adv. Mater., 2022, 34(8): 2108353. |
[112] | Liu J P, Yuan B T, He N A D, Dong L W, Chen D J, Zhong S J, Ji Y P, Han J C, Yang C H, Liu Y P, He W D. Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries[J]. Energy Environ. Sci., 2023, 16(3): 1024-1034. |
[113] | Jiang H Z, Yang C, Chen M, Liu X W, Yin L M, You Y, Lu J. Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery[J]. Angew. Chem. Int. Ed., 2023, 62(14): e202300238. |
[114] |
Zhang J Y, Yan Y L, Wang X, Cui Y Y, Zhang Z F, Wang S, Xie Z K, Yan P F, Chen W H. Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes[J]. Nat. Commun., 2023, 14(1): 3701.
doi: 10.1038/s41467-023-39384-7 pmid: 37349302 |
[1] | 姚硕, 黄太仲, RizwanHaider, 房恒义, 于洁玫, 姜占坤, 梁栋, 孙玥, 原鲜霞. NiO@rGO负载钯、银纳米粒子用作氧还原催化剂[J]. 电化学(中英文), 2020, 26(2): 270-280. |
[2] | 谭青龙,王海宁,卢善富,梁大为,武春晓,相艳. 表面修饰模式对Nafion离子选择性影响及在VRFB中的应用[J]. 电化学(中英文), 2017, 23(4): 409-419. |
[3] | Hisham Hamzah,Guy Denuault,Philip Bartlett,Aleksandra Pinczewska,Jeremy Kilburn. 乙腈/碳酸氢钠溶液混合物电嫁接叔丁氧羟基-乙二胺[J]. 电化学(中英文), 2017, 23(2): 130-140. |
[4] | 程琥, 聂晓燕, 申叶丹, . 哌啶型离子液体混合电解液在Li/LiCoO2电池中的性能研究[J]. 电化学(中英文), 2017, 23(1): 59-63. |
[5] | 吴国涛, 王春生, 齐仲甫, 李文铸. 巴基管嵌锂电极性能的研究[J]. 电化学(中英文), 1998, 4(3): 313-317. |
[6] | 孙世刚. 原子和分子水平层次的表面电化学与电催化研究[J]. 电化学(中英文), 1998, 4(1): 88-93. |
[7] | 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智. 贮氢合金电极的活化方法和作用机理研究[J]. 电化学(中英文), 1996, 2(2): 170-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||