电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 474-485. doi: 10.13208/j.electrochem.200442
收稿日期:
2020-05-04
修回日期:
2020-06-11
出版日期:
2020-08-28
发布日期:
2020-06-28
通讯作者:
程方益
E-mail:fycheng@nankai.edu.cn
基金资助:
Received:
2020-05-04
Revised:
2020-06-11
Published:
2020-08-28
Online:
2020-06-28
Contact:
CHENG Fang-yi
E-mail:fycheng@nankai.edu.cn
摘要:
本文概述了惰性小分子电催化还原反应(如二氧化碳还原反应和氮气还原反应)中电解液的组成和作用机制,介绍了相关电解液研究的最新进展,并讨论了电解液调控在揭示反应机理、改善催化性能中的重要作用.
中图分类号:
李金翰, 程方益. 惰性小分子电催化还原反应的电解液调控[J]. 电化学(中英文), 2020, 26(4): 474-485.
LI Jin-han, CHENG Fang-yi. Electrolyte Tailoring for Electrocatalytic Reduction of Stable Molecules[J]. Journal of Electrochemistry, 2020, 26(4): 474-485.
[1] |
Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018,360(6391):eaar6611.
doi: 10.1126/science.aar6611 URL pmid: 29798857 |
[2] |
Gruber N, Galloway J N, An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296.
doi: 10.1038/nature06592 URL pmid: 18202647 |
[3] | Gao D, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019,2(3):198-210. |
[4] | Ross M B, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019,2(8):648-658. |
[5] |
Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019,4(9):732-745.
doi: 10.1038/s41560-019-0450-y URL |
[6] | Guo C, Ran J, Vasileff A, et al. Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018,11(1):45-56. |
[7] | Xu W C, Fan G L, Chen J L, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions[J]. Angewandte Chemie International Edition, 2020,132(9):3539-3544. |
[8] | Wei Y J, Liu J, Cheng F Y, et al. Mn-doped atomic SnO2 layers for highly efficient CO2 electrochemical reduction[J]. Journal of Materials Chemistry A, 2019,7(34):19651-19656. |
[9] | Mistry H, Behafarid F, Reske R, et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions[J]. ACS Catalysis, 2016,6(2):1075-1080. |
[10] |
Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society, 2012,134(17):7231-7234.
doi: 10.1021/ja3010978 URL pmid: 22506621 |
[11] | Hao Y C, Guo Y, Chen L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019,2(5):448-456. |
[12] | Matthew M Sartin, Chen W (陈微), He F (贺凡), et al. Recent progress in the mechanistic understanding of CO2 reduction on copper[J]. Journal of Electrochemistry (电化学), 2020,26(1):41-53. |
[13] | Wang L (王鲁丰), Qian X (钱鑫), Deng L F (邓丽芳), et al. Recent progress on catalysts about electochemical syjournal of ammonia from nitrogen[J]. CIESC Journal (化工学报), 2019,70(8):2854-2863. |
[14] | Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453. |
[15] | Kibria M G, Edwards J P, Gabardo C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design[J]. Advanced Materials, 2019,31(31):1807166. |
[16] | Qiao S Z (乔世璋). Nanoscale enrichment effect boosts electrocatalytic carbon dioxide reduction[J]. Acta Physico-Chimica Sinica (物理化学学报), 2020,36:2004010-2004011. |
[17] | Zhang X R (张旭锐), Shao X L (邵晓琳), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425. |
[18] | Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582. |
[19] |
Yin F J, Liu H. The j-pH diagram of interfacial reactions involving H+ and OH-[J]. Journal of Energy Chemistry, 2020,50:339-343.
doi: 10.1016/j.jechem.2020.03.078 URL |
[20] |
Zhu S, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017,139(44):15664-15667.
doi: 10.1021/jacs.7b10462 URL pmid: 29058890 |
[21] |
Handoko A D, Wei F, Yeo B S, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018,1(12):922-934.
doi: 10.1038/s41929-018-0182-6 URL |
[22] | Chen L D, Urushihara M, Chan K, et al. Electric field effects in electrochemical CO2 reduction[J]. ACS Catalysis, 2016,6(10):7133-7139. |
[23] | Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synjournal: the selectivity challenge[J]. ACS Catalysis, 2017,7(1):706-709. |
[24] |
Pérez-Gallent E, Figueiredo M C, Calle-Vallejo F, et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes[J]. Angewandte Chemie International Edition, 2017,56(13):3621-3624.
doi: 10.1002/anie.201700580 URL pmid: 28230297 |
[25] |
Pérez-Gallent E, Marcandalli G, Figueiredo M C, et al. Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes[J]. Journal of the American Chemical Society, 2017,139(45):16412-16419.
doi: 10.1021/jacs.7b10142 URL pmid: 29064691 |
[26] | Gao D, McCrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design[J]. ACS Catalysis, 2018,8(11):10012-10020. |
[27] | Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products[J]. Nature Ca-talysis, 2018,1(10):748-755. |
[28] | Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 1991,64(1):123-127. |
[29] | Hori Y, Suzuki S. Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution[J]. Bulletin of the Chemical Society of Japan, 1982,55(3):660-665. |
[30] | Thorson M R, Siil K I, Kenis P J. Effect of cations on the electrochemical conversion of CO2 to CO[J]. Journal of The Electrochemical Society, 2012,160(1):F69-F74. |
[31] |
Ayemoba O, Cuesta A. Spectroscopic evidence of sizedependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction[J]. ACS Applied Materials & Interfaces, 2017,9(33):27377-27382.
doi: 10.1021/acsami.7b07351 URL pmid: 28796478 |
[32] |
Singh M R, Kwon Y, Lum Y, et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
doi: 10.1021/jacs.6b07612 URL pmid: 27626299 |
[33] |
Verma S, Lu X, Ma S, et al. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes[J]. Physical Chemistry Chemical Physics, 2016,18(10):7075-7084.
doi: 10.1039/c5cp05665a URL pmid: 26661416 |
[34] |
Resasco J, Chen L D, Clark E, et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2017,139(32):11277-11287.
URL pmid: 28738673 |
[35] | Schizodimou A, Kyriacou G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations[J]. Electrochimica Acta, 2012,78:171-176. |
[36] | Varela A S, Ju W, Reier T, et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catalysis, 2016,6(4):2136-2144. |
[37] | Kortlever R, Tan K, Kwon Y, et al. Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media[J]. Journal of Solid State Electrochemistry, 2013,17(7):1843-1849. |
[38] | Innocent B, Pasquier D, Ropital F, et al. FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium[J]. Applied Catalysis B: Environmental, 2010,94(3/4):219-224. |
[39] |
Sreekanth N, Phani K L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM[J]. Chemical Communications, 2014,50(76):11143-11146.
doi: 10.1039/c4cc03099k URL pmid: 25109460 |
[40] |
Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017,139(10):3774-3783.
doi: 10.1021/jacs.6b13287 URL pmid: 28211683 |
[41] |
Wuttig A, Yoon Y, Ryu J, et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction[J]. Journal of the American Chemical Society, 2017,139(47):17109-17113.
doi: 10.1021/jacs.7b08345 URL pmid: 28978199 |
[42] | Gao D, Scholten F, Roldan Cuenya B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect[J]. ACS Ca-talysis, 2017,7(8):5112-5120. |
[43] | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989,85(8):2309-2326. |
[44] | Kas R, Kortlever R, Yilmaz H, et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectro-Chem, 2015,2(3):354-358. |
[45] |
Varela A S, Kroschel M, Reier T, et al. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH[J]. Catalysis Today, 2016,260:8-13.
doi: 10.1016/j.cattod.2015.06.009 URL |
[46] |
Hashiba H, Weng L C, Chen Y, et al. Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction[J]. The Journal of Physical Chemistry C, 2018,122(7):3719-3726.
doi: 10.1021/acs.jpcc.7b11316 URL |
[47] | Gabardo C M, Seifitokaldani A, Edwards J P, et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO[J]. Energy & Environmental Science, 2018,11(9):2531-2539. |
[48] |
Ma S, Sadakiyo M, Luo R, et al. One-step electrosynjournal of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016,301:219-228.
doi: 10.1016/j.jpowsour.2015.09.124 URL |
[49] |
Verma S, Hamasaki Y, Kim C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer[J]. ACS Energy Letters, 2017,3(1):193-198.
doi: 10.1021/acsenergylett.7b01096 URL |
[50] |
Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
doi: 10.1126/science.aas9100 URL pmid: 29773749 |
[51] |
de Arquer F P G, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2[J]. Science, 2020,367(6478):661-666.
doi: 10.1126/science.aay4217 URL pmid: 32029623 |
[52] |
Rosen B A, Salehi-Khojin A, Thorson M R, et al. Ionic liquid - mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334(6056):643-644.
doi: 10.1126/science.1209786 URL pmid: 21960532 |
[53] |
Sun L, Ramesha G K, Kamat P V, et al. Switching the reaction course of electrochemical CO2 reduction with ionic liquids[J]. Langmuir, 2014,30(21):6302-6308.
doi: 10.1021/la5009076 URL pmid: 24851903 |
[54] | Zhou F, Azofra L M, Ali M, et al. Electro-synjournal of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017,10(12):2516-2520. |
[55] | Urushihara M, Chan K, Shi C, et al. Theoretical study of EMIM+ adsorption on silver electrode surfaces[J]. The Journal of Physical Chemistry C, 2015,119(34):20023-20029. |
[56] |
Zhu W, Michalsky R, Metin O n, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013,135(45):16833-16836.
doi: 10.1021/ja409445p URL pmid: 24156631 |
[57] |
Lim H K, Kim H. The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction: a review[J]. Molecules, 2017,22(4):536.
doi: 10.3390/molecules22040536 URL |
[58] |
Grosse P, Gao D, Scholten F, et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects[J]. Angewandte Chemie International Edition, 2018,57(21):6192-6197.
URL pmid: 29578622 |
[59] |
Dutta A, Morstein C E, Rahaman M, et al. Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts[J]. ACS Catalysis, 2018,8(9):8357-8368.
doi: 10.1021/acscatal.8b01738 URL |
[60] |
Kim Y G, Baricuatro J H, Javier A, et al. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM[J]. Langmuir, 2014,30(50):15053-15056.
doi: 10.1021/la504445g URL pmid: 25489793 |
[61] |
Kim Y G, Baricuatro J H, Soriaga M P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction[J]. Electrocatalysis, 2018,9(4):526-530.
doi: 10.1007/s12678-018-0469-z URL |
[62] |
Lee S Y, Jung H, Kim N K, et al. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction[J]. Journal of the American Chemical Society, 2018,140(28):8681-8689.
doi: 10.1021/jacs.8b02173 URL pmid: 29913063 |
[63] |
Huang J, Hörmann N, Oveisi E, et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction[J]. Nature Communications, 2018,9(1):1-9.
doi: 10.1038/s41467-017-02088-w URL pmid: 29317637 |
[64] |
Roberts F S, Kuhl K P, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte Chemie International Edition, 2015,54(17):5179-5182.
doi: 10.1002/anie.201412214 URL pmid: 25728325 |
[65] |
Gao D, Zegkinoglou I, Divins N J, et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J]. ACS Nano, 2017,11(5):4825-4831.
doi: 10.1021/acsnano.7b01257 URL pmid: 28441005 |
[66] |
Matsushima H, Taranovskyy A, Haak C, et al. Reconstruction of Cu(100) electrode surfaces during hydrogen evolution[J]. Journal of the American Chemical Society, 2009,131(30):10362-10363.
doi: 10.1021/ja904033t URL pmid: 19588964 |
[67] |
Becker J Y, Avraham S, Posin B. Nitrogen fixation: Part I. Electrochemical reduction of titanium compounds in the presence of catechol and N2 in MeOH or THF[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987,230(1/2):143-153.
doi: 10.1016/0022-0728(87)80138-9 URL |
[68] |
Kim K, Lee N, Yoo C, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016,163(7):F610-F612.
doi: 10.1149/2.0231607jes URL |
[69] |
Kim K, Yoo C Y, Kim J N, et al. Electrochemical synjournal of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016,163(14):F1523-F1526.
doi: 10.1149/2.0741614jes URL |
[70] |
Lee H K, Koh C S L, Lee Y H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Science Advances, 2018, 4(3):eaar3208.
URL pmid: 29536047 |
[71] |
Ohya S, Kaneco S, Katsumata H, et al. Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O[J]. Catalysis Today, 2009,148(3-4):329-334.
doi: 10.1016/j.cattod.2009.07.077 URL |
[72] |
Kaneco S, Iiba K, Katsumata H, et al. Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol[J]. Electrochimica Acta, 2006,51(23):4880-4885.
doi: 10.1016/j.electacta.2006.01.032 URL |
[73] |
Sheets B L, Botte G G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte[J]. Chemical Communications, 2018,54(34):4250-4253.
doi: 10.1039/c8cc00657a URL pmid: 29521392 |
[74] |
Cook R L, Sammells A F. Ambient temperature gas phase electrochemical nitrogen reduction to ammonia at ruthenium/solid polymer electrolyte interface[J]. Catalysis Letters, 1988,1(11):345-349.
doi: 10.1007/BF00766163 URL |
[75] |
Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019,4(9):776-785.
doi: 10.1038/s41560-019-0451-x URL |
[76] |
Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016,1(6):1149-1153.
doi: 10.1021/acsenergylett.6b00475 URL |
[77] |
Salvatore D A, Weekes D M, He J, et al. Electrolysis of Gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154.
doi: 10.1021/acsenergylett.7b01017 URL |
[78] | Liu Z, Masel R I, Chen Q, et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016,15(S1):50-56. |
[79] |
Lee W, Kim Y E, Youn M H, et al. Catholyte-free electrocatalytic CO2 reduction to formate[J]. Angewandte Chemie International Edition, 2018,57(23):6883-6887.
doi: 10.1002/anie.201803501 URL pmid: 29660257 |
[80] |
Delacourt C, Ridgway P L, Kerr J B, et al. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature[J]. Journal of The Electrochemical Society, 2008,155(1):B42-B49.
doi: 10.1149/1.2801871 URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[9] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[10] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[11] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[12] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[13] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[14] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[15] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||