[1] |
Shao M H, Chang Q W, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016,116(6):3594-3657.
URL
pmid: 26886420
|
[2] |
Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 2013,12(3):228-232.
doi: 10.1038/nmat3486
URL
pmid: 23202372
|
[3] |
Wroblowa H S, Pan Y C, Razumney G. Electroreduction of oxygen - new mechanistic criterion[J]. Journal of Electroanalytical Chemistry, 1976,69:195-201.
|
[4] |
J K Nörskov, J Rossmeisl, A Logadottir, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892.
|
[5] |
Popov B N, Lee J W, Kriston A, et al. Review—Development of highly active and durable hybrid compressive platinum lattice catalysts for polymer electrolyte membrane fuel cells: mathematical modeling and experimental work[J]. Journal of The Electrochemical Society, 2020,167(5):054512.
|
[6] |
Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964,201:1212-1213.
doi: 10.1038/2011212a0
URL
|
[7] |
Jahnke H, Schonborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells[J]. Topics in Current Chemistry, 1976,61:133-181.
URL
pmid: 7032
|
[8] |
Proietti E, Jaouen F, Lefevre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011,2:416.
URL
pmid: 21811245
|
[9] |
Wen Z H, Ci S Q, Zhang F, et al. Nitrogen-enriched coreshell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction[J]. Advanced Materials, 2012,24(11):1399-1404.
doi: 10.1002/adma.201104392
URL
pmid: 22311518
|
[10] |
Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015,14(9):937-942.
URL
pmid: 26259106
|
[11] |
Xiao M L, Zhu J B, Ma L, et al. Microporous framework induced synjournal of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy[J]. ACS Catalysis, 2018,8(4):2824-2832.
doi: 10.1021/acscatal.8b00138
URL
|
[12] |
Gao L Q, Xiao M L, Jin Z, et al. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst[J]. Journal of Energy Chemistry, 2018,27(6):1668-1673
doi: 10.1016/j.jechem.2018.06.008
URL
|
[13] |
Gao L Q, Xiao M L, Jin Z, et al. Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst[J]. Journal of Energy Chemistry, 2019,35:17-23.
doi: 10.1016/j.jechem.2018.09.019
URL
|
[14] |
Xiao M L, Zhang H, Chen Y T, et al. Identification of binuclear CO2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site[J]. Nano Energy 2018,46, 396-403.
|
[15] |
Xiao M L, Chen Y T, Zhu J B, et al. Climbing the Apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering[J]. Journal of The American Chemical Society, 2019,141(44):17763-17770.
doi: 10.1021/jacs.9b08362
URL
pmid: 31603677
|
[16] |
Luo E G, Zhang H, Wang X, et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media[J]. Angewandte Chemie International Edition, 2019,58(36):12469-12475.
doi: 10.1002/anie.201906289
URL
pmid: 31290248
|
[17] |
Xiao M L, Gao L Q, Wang Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of The American Chemical Society, 2019,141(50):19800-19806.
doi: 10.1021/jacs.9b09234
URL
pmid: 31763837
|