欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 464-473.  doi: 10.13208/j.electrochem.200444

• 综述 • 上一篇    下一篇

长春应化所金属氮碳氧还原催化剂的研究进展

徐明俊1,2, 刘杰1,2, 葛君杰1,*(), 刘长鹏1,*(), 邢巍1,*()   

  1. 1.中国科学院长春应用化学研究所,先进化学电源实验室,电分析化学国家重点实验室,吉林 长春 130022
    2.中国科学技术大学应用化学与工程学院,安徽 合肥 230026
  • 收稿日期:2020-05-07 修回日期:2020-05-29 出版日期:2020-08-28 发布日期:2020-06-03
  • 通讯作者: 葛君杰,刘长鹏,邢巍 E-mail:gejj@ciac.ac.cn;liuchp@ciac.ac.cn;xingwei@ciac.ac.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900);国家自然科学基金(21633008);国家自然科学基金(21875243);国家自然科学基金(21433003);中国科学院战略重点研究先导项目(XDA09030104);RFBR project number (Fateev Vladimir)(18-53-53025);吉林省科技发展项目(20170520150JH);吉林省科技发展项目(20170203003SF);吉林省科技发展项目(20180101030JC)

Research Progress of Metal-Nitrogen-Carbon Catalysts toward Oxygen Reduction Reaction inm Changchun Institute of Applied Chemistry

XU Ming-jun1,2, LIU Jie1,2, GE Jun-jie1,*(), LIU Chang-peng1,*(), XING Wei1,*()   

  1. 1. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022,Jilin, China
    2. University of Science and Technology of China, School of Applied Chemistry & Engineering, Hefei 230026, Anhui, China
  • Received:2020-05-07 Revised:2020-05-29 Published:2020-08-28 Online:2020-06-03
  • Contact: GE Jun-jie,LIU Chang-peng,XING Wei E-mail:gejj@ciac.ac.cn;liuchp@ciac.ac.cn;xingwei@ciac.ac.cn

摘要:

氧还原反应是燃料电池的核心,开发高性能催化剂一直是燃料电池技术面临的严峻挑战. 近年来,热解M-N-C催化剂的发展和以金属有机骨架材料为前驱体的运用让非贵金属氧还原催化剂的性能大幅度提升,但催化活性位点、反应机理等方面仍不甚清晰,需要分子水平上进一步的研究. 在这里,作者总结了本课题组近些年来在氧还原方向上的研究成果,首先是对催化剂活性位点进行的相关探索,提出了新的活性位点结构,为开发新型催化剂提供了帮助,并对金属氮碳催化剂进行了细致的微观调控,探讨了最佳的合成方法;其次开发了高效的双原子Co2N5催化剂,并在理论计算的指导下合成出了更为高效的FeCo双原子催化剂,具备了替代铂基催化剂的性能;最后针对芬顿反应引发的稳定性问题而开发的低芬顿反应活性的单原子Cr和单原子Ru催化剂,表现出了较高的活性和稳定性,为解决催化剂实际应用问题开辟了新的研究思路与方向. 作者相信,通过对催化剂活性位点的不断认知和对新型催化剂的不断开发,终会让非贵金属催化的商业化应用成为现实.

关键词: 氧还原反应, 金属氮碳催化剂, 活性位点, 原子分散, 燃料电池

Abstract:

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the Fe-N-C catalyst, which is helpful for the development of new catalyst. The M-N-C catalyst was carefully regulated and the best synthesis method was discussed; Secondly, a highly efficient binuclear Co2N5 catalyst was developed, which performs approximately 12 times higher activity than the conventional CoN4 site and shows unprecedented catalytic activity in an acidic electrolyte with the half-wave potential of 0.79 V, presenting the best one among the Co-N-C catalysts, and a more efficient FeCo diatomic catalyst was synthesized under the guidance of theoretical calculation, indicating that the FeCoN5—OH site enables the ORR onset potential and half-wave potential up to 1.02 and 0.86 V (vs. RHE), respectively, with an intrinsic activity over 20 times higher than the single-atom FeN4 site; Finally, to overcome the stability problem caused by Fenton reaction, we developed novel single atomic Cr and Ru catalysts, showing low Fenton reaction activity, higher activity and stability after the accelerated degradation test for 20000 cycles, with the half-wave potentials being dropped only 15 and 17 mV, respectively, much lower than 31 mV of Fe-N-C catalysts. This offers a new way to solve the problem in catalyst application. We believe that upon further understanding in the active sites and the continuous development of new catalyst, the non-noble metal catalysts in PEMFCs will become truly applicable, which aids to solve the increasingly serious energy crisis environment.

Key words: oxygen reduction reaction, metal-nitrogen-carbon catalyst, active site, atmotic dispersion, fuel cell

中图分类号: