电化学(中英文) ›› 2023, Vol. 29 ›› Issue (4): 2217005. doi: 10.13208/j.electrochem.2217005
所属专题: “下一代二次电池”专题文章
收稿日期:
2022-07-30
修回日期:
2022-09-04
接受日期:
2022-09-20
出版日期:
2023-04-28
发布日期:
2022-09-26
Xiu-Qing Zhang, Shuai Tang*(), Yong-Zhu Fu*()
Received:
2022-07-30
Revised:
2022-09-04
Accepted:
2022-09-20
Published:
2023-04-28
Online:
2022-09-26
Contact:
*Tel: (86)13606938256, E-mail address: 摘要:
由于具有能量密度高、成本低等优点,锂硫电池成为最有前景的下一代电池体系之一。然而,锂硫电池的实际应用仍面临着严峻挑战,如硫和硫化锂的低电导率、多硫化物的穿梭效应和锂枝晶的生长等。通过电解液的优化,可以改善电极|电解质界面,减弱副反应,提高电池性能。其中,电解液中的功能添加剂能有效调节电极界面和电池的氧化还原机制。本文系统性总结了锂硫电池添加剂的最新研究进展,并根据添加剂对锂金属负极的保护作用和对硫正极的稳定作用进行了分类。另外,本文详细讨论了添加剂在硫正极的作用,如抑制多硫化物的溶解和穿梭、充当氧化还原介质、激活硫化锂的沉积与溶解等。最后,本文展望了锂硫电池添加剂的发展前景,希望能对高性能锂硫电池电解液的设计提供借鉴。
张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005.
Xiu-Qing Zhang, Shuai Tang, Yong-Zhu Fu. Recent Advances of Functional Electrolyte Additives for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2023, 29(4): 2217005.
Additive | Electrolyte | Initial capacity (mAh·g-1)/C rate | Sulfur loading (mg·cm-2) | Final capacity (mAh·g-1)/cycle number | Ref. |
---|---|---|---|---|---|
2 wt% ZrO(NO3)2 | Li-S electrolytea | 1226/0.5 | 1.5 | 398/280 | [ |
2 wt% LaNO3 | Li-S electrolyte | 1280/0.2 | 0.9 | 807/300 | [ |
2 wt% LiN3 (70 ℃) | LiTFSI PEO (EO:Li 20:1) | 0.1 | 1.0 | 800/30 | [ |
7 mg·mL-1 boron nitride nanosheet (BNNS) | Li-S electrolyte | 1223/0.1 | 1.5 | 881/200 | [ |
0.2 mol·L-1 triazole (Ta) and tetrazole (Tta) | Li-S electrolyte | (1425)1322/0.2 | 1 | 704(780)/200 | [ |
40 wt% CS2 | Li-S electrolyte | 962/0.5 | 1 | 747/300 | [ |
4 wt% Alpha-lipoic acid (ALA) | Li-S electrolyte | 1005/0.2 | 1.2 | 787/200 | [ |
8 wt% Poly(sulfur-random-triallylamine) (PST) | Li-S electrolyte | 1431/1 | 1.5 | 735/1000 | [ |
50 mmol·L-1 biphenyl-4,4′-dithiol (BPD) | 1 mol·L-1 LiTFSI G4/DOL | 900/0.1 | 0.7-1.2 | 650/100 | [ |
80 mmol·L-1 3,5-bis(trifluoromethyl) thiophenol (BTB) | Li-S electrolyte | 950/0.1 | 4.5 | 700/82 | [ |
0.15 mol·L-1 1,4-benzenedithiols (1,4-BDT) | Li-S electrolyte | 1347/0.5 | 1 | 909/500 | [ |
0.15 mol·L-1 1,3,5-benzenetrithiol (BTT) | Li-S electrolyte | 1036/1 | 1 | 907/300 | [ |
0.7 mol·L-1 benzoselenol (PhSeH) | Li-S electrolyte | 1436/0.5 | 1.1 | 1300/200 | [ |
0.1 mol·L-1 SiCl4 | 1 mol·L-1 LiPF6/PC | ca. 1350/1 | 1 | 751/200 | [ |
5 mmol·L-1 nitrofullerene (Nitro-C60) | 1 mol·L-1 LiPF6 in EC:DEC | ca. 2000/0.05 | 1.5 | ca. 630/500 | [ |
2 mg 4 mL-1 graphene quantum dots (GQDs) | Li-S electrolyte | 830/0.5 | 4 | 498/200 | [ |
N, S-codoped carbon dots (N,S-CDs) | Li-S electrolyte | 915/0.5 | 1 | 600/300 | [ |
5 wt% pyrrole | Li-S electrolyte | 1649/0.2 | 1 | 908/100 | [ |
2 wt% triphenylphosphine (TPP) | Li-S electrolyte | 994/1 | 2.1 | 698/1000 | [ |
0.11 mol·L-1 Bis(4-nitrophenyl) Carbonate (BNC) | Li-S electrolyte | 841/1 | 1.49 | 778/300 | [ |
20 mmol·L-1 Quinhydrone (QH) | 0.5 mol·L-1 LiOTf and 0.5 mol·L-1 LiNO3 in DME/DOL | 963/1 | 1.5 | 933/300 | [ |
0.5 wt% nitrogen-doped carbon dots (N-CD) | Li-S electrolyte | 891/0.5 | 2 | 589/500 | [ |
10 g·L−1 dithiothreitol (DTT) | Li-S electrolyte | 808/0.5 | 1.8-2 | 471/500 | [ |
4% glutamate | Li-S electrolyte | 605/2 | 1.5 | 363/1000 | [ |
Diphenyl diselenide (DPDSe) | Li-S electrolyte | 1056/0.5 | 1.2 | 720/350 | [ |
80 mmol·L-1 1,5-bis(2-(2-(2- methoxyethoxy)ethoxy)ethoxy) anthra-9,10-quinone | Li-S electrolyte | 1300/0.1 | 0.7 (Li2S) | 850/500 | [ |
20 mmol·L-1 cobaltocene (CoCp2) | Li-S electrolyte | 757/2 | 1.3 | 552/100 | [ |
100 mmol·L-1 di-t-butyl disulfide (DtbDS) | Li-S electrolyte | ca. 1000/0.5 | 1.2 | 600/300 | [ |
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 |
[2] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438 pmid: 23294028 |
[3] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16 pmid: 28265117 |
[4] |
Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts Chem. Res., 2013, 46(5): 1125-1134.
doi: 10.1021/ar300179v pmid: 23095063 |
[5] |
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v pmid: 25026475 |
[6] |
Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J, Rüther T. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.
doi: 10.1039/C4EE02192D URL |
[7] |
Moon S, Jung Y H, Jung W K, Jung D S, Choi J W, Kim D K. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries[J]. Adv. Mater., 2013, 25(45): 6547-6553.
doi: 10.1002/adma.201303166 URL |
[8] |
Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. Rechargeable lithium sulfur battery[J]. J. Electrochem. Soc., 2003, 150(6): A796-A799.
doi: 10.1149/1.1571532 URL |
[9] |
Cao R, Chen J, Han K S, Xu W, Mei D, Bhattacharya P, Engelhard M H, Mueller K T, Liu J, Zhang J G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries[J]. Adv. Funct. Mater., 2016, 26(18): 3059-3066.
doi: 10.1002/adfm.201505074 URL |
[10] |
Liu Y D, Liu Q, Xin L, Liu Y Z, Yang F, Stach E A, Xie J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nat. Energy, 2017, 2(7): 17083.
doi: 10.1038/nenergy.2017.83 URL |
[11] |
Zang J, An T H, Dong Y J, Fang X L, Zheng M S, Dong Q F, Zheng N F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries[J]. Nano Res., 2015, 8(8): 2663-2675.
doi: 10.1007/s12274-015-0773-3 URL |
[12] |
Seh Z W, Yu J H, Li W, Hsu P C, Wang H, Sun Y, Yao H, Zhang Q, Cui Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nat. Commun., 2014, 5(1): 5017.
doi: 10.1038/ncomms6017 |
[13] |
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291.
doi: 10.1002/smll.v12.24 URL |
[14] | Wu F, Zhao S Y, Chen L, Lu Y, Su Y F, Jia Y N, Bao L Y, Wang J, Chen S, Chen R J. Metal-organic frameworks composites threaded on the cnt knitted separator for suppressing the shuttle effect of lithium sulfur batteries[J]. Energy Storage Mater., 2018, 14: 383-391. |
[15] |
Chen L, Huang Z, Shahbazian-Yassar R, Libera J A, Klavetter K C, Zavadil K R, Elam J W. Directly formed alucone on lithium metal for high-performance li batteries and Li-S batteries with high sulfur mass loading[J]. ACS Appl. Mater. Interfaces, 2018, 10(8): 7043-7051.
doi: 10.1021/acsami.7b15879 URL |
[16] |
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat. Commun., 2015, 6(1): 8058.
doi: 10.1038/ncomms9058 |
[17] |
Zhang S, Ueno K, Dokko K, Watanabe M. Recent advances in electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1500117.
doi: 10.1002/aenm.201500117 URL |
[18] |
Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919.
doi: 10.1002/adfm.v28.38 URL |
[19] |
Zhang H, Eshetu G G, Judez X, Li C, Rodriguez-Martínez L M, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2018, 57(46): 15002-15027.
doi: 10.1002/anie.201712702 pmid: 29442418 |
[20] |
Liu G, Sun Q J, Li Q, Zhang J L, Ming J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427.
doi: 10.1021/acs.energyfuels.1c00990 URL |
[21] |
Cao R, Xu W, Lv D, Xiao J, Zhang J G. Anodes for rechargeable lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1402273.
doi: 10.1002/aenm.201402273 URL |
[22] |
Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. J. Electrochem. Soc., 2009, 156(8): A694-A702.
doi: 10.1149/1.3148721 URL |
[23] |
Xiong S Z, Xie K, Diao Y, Hong X B. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries[J]. J. Power Sources, 2014, 246: 840-845.
doi: 10.1016/j.jpowsour.2013.08.041 URL |
[24] |
Jozwiuk A, Berkes B B, Weiß T, Sommer H, Janek J, Brezesinski T. The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries[J]. Energy Environ. Sci., 2016, 9(8): 2603-2608.
doi: 10.1039/C6EE00789A URL |
[25] |
Zhang S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. J. Power Sources, 2016, 322: 99-105.
doi: 10.1016/j.jpowsour.2016.05.009 URL |
[26] |
Ding N, Zhou L, Zhou C, Geng D, Yang J, Chien S W, Liu Z, Ng M F, Yu A, Hor T S A, Sullivan M B, Zong Y. Building better lithium-sulfur batteries: From LinO3 to solid oxide catalyst[J]. Sci. Rep., 2016, 6(1): 33154.
doi: 10.1038/srep33154 |
[27] |
Li J, Zhang L, Qin F R, Hong B, Xiang Q, Zhang K, Fang J, Lai Y Q. ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium-sulfur batteries[J]. J. Power Sources, 2019, 442: 227232.
doi: 10.1016/j.jpowsour.2019.227232 URL |
[28] |
Jia W S, Fan C, Wang L P, Wang Q J, Zhao M J, Zhou A J, Li J Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15399-15405.
doi: 10.1021/acsami.6b03897 URL |
[29] |
Kim J S, Yoo D J, Min J, Shakoor R A, Kahraman R, Choi J W. Poreless separator and electrolyte additive for lithium-sulfur batteries with high areal energy densities[J]. ChemNanoMat, 2015, 1(4): 240-245.
doi: 10.1002/cnma.v1.4 URL |
[30] |
Liu S, Li G R, Gao X P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium-sulfur battery[J]. ACS Appl. Mater. Inter., 2016, 8(12): 7783-7789.
doi: 10.1021/acsami.5b12231 URL |
[31] |
Jin L, Li G, Liu B, Li Z, Zheng J, Zheng J P. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer[J]. J. Power Sources, 2017, 355: 147-153.
doi: 10.1016/j.jpowsour.2017.04.059 URL |
[32] | Baloch M, Shanmukaraj D, Bondarchuk O, Bekaert E, Rojo T, Armand M. Variations on Li3N protective coating using ex-situ and in-situ techniques for Li in sulphur batteries[J]. Energy Storage Mater., 2017, 9: 141-149. |
[33] |
Eshetu G G, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez L M, Zhang H, Armand M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(48): 15368-15372.
doi: 10.1002/anie.201709305 pmid: 28994228 |
[34] |
Wu J Y, Li X W, Rao Z X, Xu X N, Cheng Z X, Liao Y Q, Yuan L X, Xie X L, Li Z, Huang Y H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes[J]. Nano Energy, 2020, 72: 104725.
doi: 10.1016/j.nanoen.2020.104725 URL |
[35] | Xie J, Sun S Y, Chen X, Hou L P, Li B Q, Peng H J, Huang J Q, Zhang X Q, Zhang Q. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2022, 61(29): e202204776. |
[36] |
Wang D Y, Wang W, Li F, Li X, Guo W, Fu Y. Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery[J]. J. Energy Chem., 2022, 71: 572-579.
doi: 10.1016/j.jechem.2022.04.032 URL |
[37] | Zhao C Z, Cheng X B, Zhang R, Peng H J, Huang J Q, Ran R, Huang Z H, Wei F, Zhang Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode[J]. Energy Storage Mater., 2016, 3: 77-84. |
[38] |
Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat. Commun., 2015, 6(1): 7436.
doi: 10.1038/ncomms8436 |
[39] |
Xiong S Z, Xie K, Diao Y, Hong X B. On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries[J]. J. Power Sources, 2013, 236: 181-187.
doi: 10.1016/j.jpowsour.2013.02.072 URL |
[40] |
Gu S, Wen Z Y, Qian R, Jin J, Wang Q S, Wu M F, Zhuo S J. Carbon disulfide cosolvent electrolytes for high-performance lithium sulfur batteries[J]. ACS Appl. Mater. Inter., 2016, 8(50): 34379-34386.
doi: 10.1021/acsami.6b11619 URL |
[41] |
Song J, Noh H, Lee H, Lee J N, Lee D J, Lee Y, Kim C H, Lee Y M, Park J K, Kim H T. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium-sulfur battery[J]. J. Mater. Chem. A, 2015, 3(1): 323-330.
doi: 10.1039/C4TA03625E URL |
[42] |
Li G, Gao Y, He X, Huang Q, Chen S, Kim S H, Wang D. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries[J]. Nat. Commun., 2017, 8(1): 850.
doi: 10.1038/s41467-017-00974-x pmid: 29021575 |
[43] |
Li G, Huang Q, He X, Gao Y, Wang D, Kim S H, Wang D. Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries[J]. ACS Nano, 2018, 12(2): 1500-1507.
doi: 10.1021/acsnano.7b08035 pmid: 29376330 |
[44] |
Wu H L, Shin M, Liu Y M, See K A, Gewirth A A. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 32: 50-58.
doi: 10.1016/j.nanoen.2016.12.015 URL |
[45] |
Wei J Y, Zhang X Q, Hou L P, Shi P, Li B Q, Xiao Y, Yan C, Yuan H, Huang J Q. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(37): 2003012.
doi: 10.1002/adma.v32.37 URL |
[46] |
Lian J, Guo W, Fu Y Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries[J]. J. Am. Chem. Soc., 2021, 143(29): 11063-11071.
doi: 10.1021/jacs.1c04222 pmid: 34264661 |
[47] |
Guo W, Zhang W Y, Si Y B, Wang D H, Fu Y Z, Manthiram A. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nat. Commun., 2021, 12(1): 3031.
doi: 10.1038/s41467-021-23155-3 |
[48] |
Sun J P, Zhang K, Fu Y Z, Guo W. Benzoselenol as an organic electrolyte additive in Li-S battery[J]. Nano Res., 2023, 16: 3814-3822.
doi: 10.1007/s12274-022-4361-z |
[49] | Wang G, Xiong X H, Xie D, Fu X X, Ma X D, Li Y P, Liu Y Z, Lin Z, Yang C H, Liu M L. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes[J]. Energy Storage Mater., 2019, 23: 701-706. |
[50] |
Ren Y X, Zhao T S, Liu M, Zeng Y K, Jiang H R. A self-cleaning Li-S battery enabled by a bifunctional redox mediator[J]. J. Power Sources, 2017, 361: 203-210.
doi: 10.1016/j.jpowsour.2017.06.083 URL |
[51] |
Liu M, Ren Y X, Jiang H R, Luo C, Kang F Y, Zhao T S. An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive[J]. Nano Energy, 2017, 40: 240-247.
doi: 10.1016/j.nanoen.2017.08.017 URL |
[52] | Bag S, Zhou C, Kim P J, Pol V G, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Mater., 2020, 24: 198-207. |
[53] |
Zeng D W, Yao J M, Zhang L, Xu R N, Wang S J, Yan X L, Yu C, Wang L. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nat. Commun., 2022, 13(1): 1909.
doi: 10.1038/s41467-022-29596-8 pmid: 35393423 |
[54] |
Wu F, Thieme S, Ramanujapuram A, Zhao E, Weller C, Althues H, Kaskel S, Borodin O, Yushin G. Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge[J]. Nano Energy, 2017, 40: 170-179.
doi: 10.1016/j.nanoen.2017.08.012 URL |
[55] |
Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer L A. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J]. Angew. Chem. Int. Ed., 2018, 57(4): 992-996.
doi: 10.1002/anie.201711598 pmid: 29227557 |
[56] | Li S, Dai H L, Li Y H, Lai C, Wang J L, Huo F W, Wang C. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery[J]. Energy Storage Mater., 2019, 18: 222-228. |
[57] |
Cui Y L, Liu S F, Liu B, Wang D H, Zhong Y, Zhang X Q, Wang X L, Xia X H, Gu C D, Tu J P. Bi-containing electrolyte enables robust and Li ion conductive solid electrolyte interphase for advanced lithium metal anodes[J]. Front. Chem., 2020, 7: 952.
doi: 10.3389/fchem.2019.00952 URL |
[58] |
Jiang Z P, Zeng Z Q, Yang C K, Han Z L, Hu W, Lu J, Xie J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode[J]. Nano Lett., 2019, 19(12): 8780-8786.
doi: 10.1021/acs.nanolett.9b03562 URL |
[59] |
Li J R, Liu S F, Cui Y L, Zhang S Z, Wu X Z, Xiang J Y, Li M, Wang X L, Xia X H, Gu C D, Tu J P. Potassium hexafluorophosphate additive enables stable lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(50): 56017-56026.
doi: 10.1021/acsami.0c17406 URL |
[60] | Tan J, Matz J, Dong P, Ye M, Shen J. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering[J]. Energy Storage Mater., 2021, 42: 645-678. |
[61] |
Hu Y, Chen W, Lei T Y, Jiao Y, Wang H B, Wang X P, Rao G F, Wang X F, Chen B, Xiong J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery[J]. Nano Energy, 2020, 68: 104373.
doi: 10.1016/j.nanoen.2019.104373 URL |
[62] | Li S, Luo Z, Tu H Y, Zhang H, Deng W N, Zou G Q, Hou H S, Ji X B. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode[J]. Energy Storage Mater., 2021, 42: 679-686. |
[63] |
Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D L. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries[J]. Adv. Sci., 2022, 9(12): 2106004.
doi: 10.1002/advs.v9.12 URL |
[64] |
Yang W, Yang W, Song A L, Gao L J, Sun G, Shao G J. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries[J]. J. Power Sources, 2017, 348: 175-182.
doi: 10.1016/j.jpowsour.2017.03.008 URL |
[65] |
Hu C J, Chen H W, Shen Y B, Lu D, Zhao Y F, Lu A H, Wu X, Lu W, Chen L. In situ wrapping of the cathode material in lithium-sulfur batteries[J]. Nat. Commun., 2017, 8(1): 479.
doi: 10.1038/s41467-017-00656-8 |
[66] |
Yang T, Qian T, Liu J, Xu N, Li Y, Grundish N, Yan C, Goodenough J B. A new type of electrolyte system to suppress polysulfide dissolution for lithium-sulfur battery[J]. ACS Nano, 2019, 13(8): 9067-9073.
doi: 10.1021/acsnano.9b03304 pmid: 31339690 |
[67] |
Fan X X, Yuan R M, Lei J, Lin X D, Xu P, Cui X Y, Cao L, Zheng M S, Dong Q F. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893.
doi: 10.1021/acsnano.0c07240 pmid: 33078941 |
[68] |
Fu Y S, Wu Z, Yuan Y F, Chen P, Yu L, Yuan L, Han Q R, Lan Y J, Bai W X, Kan E J, Huang C X, Ouyang X P, Wang X, Zhu J W, Lu J. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide[J]. Nat. Commun., 2020, 11(1): 845.
doi: 10.1038/s41467-020-14686-2 pmid: 32051407 |
[69] | Chen K, Fang R, Lian Z, Zhang X, Tang P, Li B, He K, Wang D W, Cheng H M, Sun Z, Li F. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Mater., 2021, 37: 224-232. |
[70] |
Conder J, Bouchet R, Trabesinger S, Marino C, Gubler L, Villevieille C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nat. Energy, 2017, 2(6): 17069.
doi: 10.1038/nenergy.2017.69 URL |
[71] |
Li G, Wang X, Seo M H, Li M, Ma L, Yuan Y, Wu T, Yu A, Wang S, Lu J, Chen Z. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nat. Commun., 2018, 9(1): 705.
doi: 10.1038/s41467-018-03116-z pmid: 29453414 |
[72] |
Liu M M, Chen X, Chen C G, Ma T Y, Huang T, Yu A S. Dithiothreitol as a promising electrolyte additive to suppress the “shuttle effect” by slicing the disulfide bonds of polysulfides in lithium-sulfur batteries[J]. J. Power Sources, 2019, 424: 254-260.
doi: 10.1016/j.jpowsour.2019.03.113 URL |
[73] |
Jiang C, Li L, Jia Q, Tang M, Fan K, Chen Y, Zhang C, Mao M, Ma J, Hu W, Wang C. In situ synthesis of organopolysulfides enabling spatial and kinetic co-mediation of sulfur chemistry[J]. ACS Nano, 2022, 16(6): 9163-9171.
doi: 10.1021/acsnano.2c01390 URL |
[74] |
Dong L W, Liu J P, Chen D J, Han Y P, Liang Y F, Yang M Q, Yang C H, He W D. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. ACS Nano, 2019, 13(12): 14172-14181.
doi: 10.1021/acsnano.9b06934 pmid: 31743000 |
[75] |
Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q. Direct intermediate regulation enabled by sulfur containers in working lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22150-22155.
doi: 10.1002/anie.v59.49 URL |
[76] |
Tamirat A G, Guan X, Liu J, Luo J, Xia Y. Redox mediators as charge agents for changing electrochemical reactions[J]. Chem. Soc. Rev., 2020, 49(20): 7454-7478.
doi: 10.1039/D0CS00489H URL |
[77] |
Chen S, Dai F, Gordin M L, Yu Z, Gao Y, Song J, Wang D. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016, 55(13): 4231-4235.
doi: 10.1002/anie.201511830 pmid: 26918660 |
[78] |
Phadke S, Coadou E, Anouti M. Catholyte formulations for high-energy Li-S batteries[J]. J. Phys. Chem. Lett., 2017, 8(23): 5907-5914.
doi: 10.1021/acs.jpclett.7b02936 pmid: 29148807 |
[79] |
Xiang Q, Shi C Y, Zhang X Y, Zhang L, He L, Hong B, Lai Y Q. Thiuram vulcanization accelerators as polysulfide scavengers to suppress shuttle effects for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(33): 29970-29977.
doi: 10.1021/acsami.9b09546 |
[80] |
Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(13): 2007298.
doi: 10.1002/adma.v33.13 URL |
[81] |
Tsao Y, Lee M, Miller E C, Gao G, Park J, Chen S, Katsumata T, Tran H, Wang L W, Toney M F, Cui Y, Bao Z. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019, 3(3): 872-884.
doi: 10.1016/j.joule.2018.12.018 URL |
[82] |
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. J. Phys. Chem. Lett., 2014, 5(5): 915-918.
doi: 10.1021/jz500222f pmid: 26274088 |
[83] |
Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195.
doi: 10.1021/jacs.1c07754 URL |
[84] |
Pan H, Han K S, Vijayakumar M, Xiao J, Cao R, Chen J, Zhang J, Mueller K T, Shao Y, Liu J. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2017, 9(5): 4290-4295.
doi: 10.1021/acsami.6b04158 URL |
[85] |
Klein M J, Dolocan A, Zu C, Manthiram A. An effective lithium sulfide encapsulation strategy for stable lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(20): 1701122.
doi: 10.1002/aenm.v7.20 URL |
[86] |
Shi Z P, Wang L, Xu H F, Wei J Q, Yue H Y, Dong H Y, Yin Y H, Yang S T. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries[J]. Chem. Commun., 2019, 55(80): 12056-12059.
doi: 10.1039/C9CC06168A URL |
[87] |
Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries[J]. Chem, 2020, 6(12): 3297-3311.
doi: 10.1016/j.chempr.2020.09.015 URL |
[88] |
Yang Y, Zheng G, Misra S, Nelson J, Toney M F, Cui Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries[J]. J. Am. Chem. Soc., 2012, 134(37): 15387-15394.
pmid: 22909273 |
[89] |
Gerber L C H, Frischmann P D, Fan F Y, Doris S E, Qu X, Scheuermann A M, Persson K, Chiang Y M, Helms B A. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Lett., 2016, 16(1): 549-554.
doi: 10.1021/acs.nanolett.5b04189 pmid: 26691496 |
[90] |
Kim K R, Lee K S, Ahn C Y, Yu S H, Sung Y E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator[J]. Sci. Rep., 2016, 6(1): 32433.
doi: 10.1038/srep32433 |
[91] |
Zhao M, Peng H J, Wei J Y, Huang J Q, Li B Q, Yuan H, Zhang Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth[J]. Small Methods, 2020, 4(6): 1900344.
doi: 10.1002/smtd.v4.6 URL |
[92] |
Lin F, Wang J, Jia H, Monroe C W, Yang J, NuLi Y. Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials[J]. J. Power Sources, 2013, 223: 18-22.
doi: 10.1016/j.jpowsour.2012.09.021 URL |
[93] |
Wang J, Lin F, Jia H, Yang J, Monroe C W, NuLi Y. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angew. Chem. Int. Ed., 2014, 53(38): 10099-10104.
doi: 10.1002/anie.201405157 pmid: 25060633 |
[94] |
Jia H, Wang J, Lin F, Monroe C W, Yang J, NuLi Y. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chem. Commun., 2014, 50(53): 7011-7013.
doi: 10.1039/C4CC01151A URL |
[95] |
Xiang J W, Zhang Y, Zhang B, Yuan L X, Liu X T, Cheng Z X, Yang Y, Zhang X X, Li Z, Shen Y, Jiang J J, Huang Y H. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy Environ. Sci., 2021, 14(6): 3510-3521.
doi: 10.1039/D1EE00049G URL |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[3] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[4] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[5] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[6] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[7] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[8] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[9] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[10] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[11] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[12] | 纪执敬, 凌惠琴, 吴培林, 余瑞益, 于大全, 李明. 玻璃通孔三维互连镀铜填充技术发展现状[J]. 电化学(中英文), 2022, 28(6): 2104461-. |
[13] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[14] | 杨凯, 陈际达, 陈世金, 许伟廉, 郭茂桂, 廖金超, 吴熷坤. 高深径比通孔脉冲电镀添加剂及电镀参数的优化[J]. 电化学(中英文), 2022, 28(6): 2104491-. |
[15] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||