[1] Appel R D, Bairoch A. Post-translational modifications: A challenge for proteomics and bioinformatics [J]. Proteomics, 2004, 4(6): 1525-15261.[2] Mann M, Jensen O N. Proteomic analysis of post-translational modifications [J]. Nature Biotechnology, 2003, 21(3): 255-261.[3] Seo J, Lee K J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches [J]. Journal of Biochemistry and Molecular Biology, 2004, 37(1): 35-44.[4] Fan C H, Wang H Y, Sun S, et al. Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane [J]. Analytical Chemistry, 2001, 73(13): 2850-2854.[5] Zhou H, Gan X, Wang J, et al. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide [J]. Analytical Chemistry, 2005, 77(18): 6102-6104.[6] Zhang W J, Huang Y X, Dai H, et al. Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors [J]. Analytical Biochemistry, 2004, 329(1): 85-90.[7] Shen M, Wang J, Yang M, et al. Direct electrochemistry of the Ti(IV)-transferrin complex: Probing into the transport of Ti(IV) by human serum transferring [J]. Electrochemistry Communications, 2011, 13(2): 114-116.[8] Wang J, Liang Z Q, Wang L H, et al. Electron transfer reactivity and catalytic activity of structurally rigidized hemoglobin [J]. Sensors and Actuators B: Chemical, 2007, 125(1): 17-21.[9] Li G X. Protein-based voltammetric sensors [M]//Grimes C A, Dickey E C, Pishko M V (Eds.). Encyclopedia of sensors, Volume 8. Stevenson Ranch: American Scientific Publishers, 2006: 301-313.[10] Li G X. Protein-based biosensors using nanomaterials [M]//Kumar C (Eds.). Nanotechnologies for life sciences, Volume 8. New York: Wiley-VCH, 2007: 278-310.[11] Li G X. Heme protein-based electrochemical biosensors [M]//Kadish K M, Smith K M, Guilard R (Eds.). Handbook of porphyrin science, Volume 5. Singapore: World Scientific Publishing, 2010: 203-298.[12] LI G X (李根喜). Electrochemical study of protein enzyme [J]. Journal of Shanghai University (Natural Science) (上海大学学报(自然科学版)), 2011, 17(4): 567-572.[13] Xiao H, Zhou H, Chen G F, et al. Interaction between inducible nitric oxide synthase and calmodulin in Ca2+-free and -bound forms [J]. Journal of Proteome Research, 2007, 6(4): 1426-1429.[14] Zhang K, Zhu X L, Wang J, et al. Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity [J]. Analytical Chemistry, 2010, 82(8): 3207-3211.[15] Xiao H, Liu L, Meng F B, et al. Electrochemical approach to detect apoptosis [J]. Analytical Chemistry, 2008, 80(13): 5272-5275.[16] Liu T, Zhu W, Yang X, et al. Detection of apoptosis based on the interaction between annexin V and phosphatidylserine [J]. Analytical Chemistry, 2009, 81(6): 2410-2413.[17] Yang Q L, Zhao J, Zhou N D, et al. Electroanalysis of telomere-bending motions caused by hTRF1 [J]. Biosensors and Bioelectronics, 2011, 26(5): 2228-2231.[18] Huang Y X, Liu L, Shi C, et al. Electrochemical analysis of the effect of Ca2+ on cardiolipin-cytochrome c interaction [J]. Biochimica et Biophysica Acta, 2006, 1760(12): 1827-1830.[19] Yang R, Gao G, Liu T, et al. Enhanced ability of hemoglobin to carry oxygen by salidroside [J]. Electrochemistry Communications, 2007, 9(1): 94-96.[20] Xiao H, Wang J, Chen G F, et al. Electrochemical evaluation of self-disassociatio n of PKA upon activation by cAMP [J]. Langmuir, 2007, 23(7): 3506-3508.[21] Huang J Y, Chen L, Zhang X, et al. Electrochemical studies of ion-channel behavior of annexin V in phosphatidylcholine bilayer membranes [J]. Electrochemistry Communications, 2008, 10(3): 451-454.[22] Liang X Q, Chen G F, Zhang X, et al. Study of UVA irradiation on hemoglobin in the presence of NADH [J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 90(1): 53-56.[23] Wang J, Cao Y, Chen G F, et al. Regulation of thrombin activity with a bifunctional aptamer and hemin: development of a new anticoagulant and antidote pair [J]. ChemBioChem, 2009, 10(13): 2171-2176.[24] Zhou N D, Cao Y, Li G X. Electron transfer and interfacial behavior of redox proteins [J]. Science China Chemistry, 2010, 53(4): 720-736. [25] Liu X J, Huang Y X, Zhang W J, et al. Electrochemical investigation of redox thermodynamics of immobilized myoglobin: ionic and ligation effects [J]. Langmuir, 2005, 21(1): 375-378.[26] Huang J Y, Zhang D M, Xing W, et al. An approach to assay th e enzymatic activity of calcineurin and the inhibitory effect of zinc ion [J]. Analytical Biochemistry, 2008, 375(2): 385-387.[27] Cao Y, Wang J, Xu Y, et al. Combination of enzyme catalysis and electrocatalysis for biosensor fabrication: application to assay the activity of indoleamine 2, 3-dioxygensae [J]. Biosensors and Bioelectronics, 2010, 26(1): 87-91. [28] Miao P, Ning L, Li X, et al. An electrochemical alkaline phosphatase biosensor fabricated with two DNA probes coupled with λ exonuclease [J]. Biosensors and Bioelectronics, 2011, 27(1): 178-182.[29] Cao Y, Jing W, Xu Y Y, et al. Sensing purine nucleoside phosphorylase activity by using silver nanoparticles [J]. Biosensors and Bioelectronics, 2010, 25(5): 1032-1036.[30] Shao Z Y, Liu Y X, Xiao H, et al. PCR-free electrochemical assay of telomerase activity [J]. Electrochemistry Communications, 2008, 10(10): 1502-1504.[31] Manning G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome [J]. Science, 2002, 298(5600): 1912-1934.[32] Cohen P. Protein kinases-the major drug targets of the twenty-first century? [J] Nature Reviews Drug Discovery, 2002, 1(4): 309-315.[33] Wang J, Shen M, Cao Y, et al. Switchable “on-off” electrochemical technique for detection of phosphorylation [J]. Biosensors and Bioelectronics, 2010, 26(2): 38-642. [34] Yang Y, Guo L H, Qu N, et al. Label-free electrochemical measurement of protein tyrosine kinase activity and inhibition based on electro-catalyzed tyrosine signaling [J]. Biosensors and Bioelectronics, 2011, 28(1): 284-290.[35] Xu X, Nie Z, Chen J, et al. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase [J]. Chemical Communications, 2009, 45: 6946-6948.[36] Wang J, Cao Y, Li Y, et al. Electrochemical strategy for detection of phosphorylation based on enzyme-linked electrocatalysis [J]. Journal of Electroanalytical Chemistry, 2011, 656 (1/2): 274-278.[37] Song H, Kerman K, Kraatz H. Electrochemical detection of kinase-catalyzed phosphorylation using ferrocene-conjugated ATP [J]. Chemical Communications, 2008, 44(4): 502-504.[38] Beckett D. Biotin sensing at the Molecular Level [J]. Journal of Nutrition, 2009, 139(1): 167-170.[39] Ng B, Polyak S W, Bird D, et al. Escherichia coli biotin protein ligase: characterization and development of a high-throughput assay [J]. Analytical Biochemistry, 2008, 376(1): 131-136.[40] Wang Z Y, Liu L, Xu Y Y, et al. Simulation and assay of protein biotinylation with electrochemical technique [J]. Biosensors and Bioelectronics, 2011, 26(11): 4610- 4613.[41] Du D, Wang L, Shao Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392) [J]. Analytical Chemistry, 2011, 83(3): 746-752.[42] Tully E, Higson S P, O’Kennedy R. The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B [J]. Biosensors and Bioelectronics, 2008, 23(6): 906-912.[43] Shi X W, Liu Y, Lewandowski A T, et al. Chitosan biotinylation and electrodeposition for selective protein assembly [J]. Macromolecular Bioscience, 2008, 8(5): 451-457.[44] Huang X, Du D, Gong X J, et al. Composite assembly of silver nanoparticles with avidin and biotinylated AChE on gold for the pesticidal electrochemical sensing [J]. Electroanalysis, 2008, 20(4): 402- 409.[45] Vidal J C, Bonel L, Duato P, et al. Improved electrochemical competitive immunosensor for ochratoxin A with a biotinylated monoclonal antibody capture probe and colloidal gold nanostructuring [J]. Analytical Methods, 2011, 3(4): 977-984.[46] Zhang J J, Zheng T T, Cheng F F, et al. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels [J]. Chemical Communications, 2011, 47(4): 1178-1180.[47] LI J (李 军), DU X (杜 鑫), Hosseini Moghaddam S H, et al. The research progress in protein glycosylation modification [J]. Bulletin of Science and Technology (科技通报), 2009, 25(6): 773-783.[48] Suzuki K, Yagi K, Oka R, et al. Relationships of serum haptoglobin concentration with HbA1c and glycated albumin concentrations in Japanese type 2 diabetic patients [J]. Clinical Chemistry and Laboratory Medicine, 2009, 47(1): 70-74.[49] Yang J H, Zhao J, Xiao H, et al. Study of hemoglobin and human serum albumin glycation with electrochemical techniques [J]. Electroanalysis, 2011, 23(2): 463 - 468.[50] Nicoletti F, Howes B, Fittipaldi M, et al. Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation [J]. Journal of the American Chemical Society, 2008, 130(35): 11677-11688.[51] Adamczyk M, Chen Y Y, Johnson D D, et al. Chemiluminescent acridinium-9-carboxamide boronic acid probes: application to a homogeneous glycated hemoglobin assay [J]. Bioorganic & Medicinal Chemistry, 2006, 16(5): 1324-1328.[52] Nathan D M, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time [J]. Diabetologia, 2007, 50(11): 2239-2244.[53] Park J Y, Chang B Y, Nam H, et al. Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes [J]. Analytical Chemistry, 2008, 80(21): 8035-8044.[54] Song S Y, Yoon H C. Boronic acid-modi?ed thin ?lm interface for speci?c binding of glycated hemoglobin (HbA1c) and electrochemical biosensing [J]. Sensors and Actuators B: Chemical, 2009, 140(1): 233-239.[55] Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: An independent risk factor for vascular disease [J]. The New England Journal of Medicine, 1991, 324(17): 1149-1155.[56] Yang X, Gao Y, Zhou J. Plasma homocysteine thiolactone adducts associated with risk of coronary heart disease [J]. Clinica Chimica Acta, 2006, 364(1/2): 230-234.[57] Per?a-Kaján J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans [J]. Amino Acids, 2007, 32(4): 561-572.[58] Jakubowski H. Pathophysiological consequences of homocysteine excess [J]. The Journal of Nutrition, 2006, 136(6 Suppl): 1741S-1749S. [59] Per?a-Kaján J, Marczak ?, Kaján L, et al. Modification by homocysteine thiolactone affects redox status of cytochrome c [J]. Biochemistry, 2007, 46(21): 6225-6231.[60] Zhao J, Zhu W, Liu T, et al. Electrochemical probing into cytochrome c modification with homocysteine-thiolactone [J]. Analytical and Bioanalytical Chemistry, 2010, 397(2): 695-701. |