电化学(中英文) ›› 2022, Vol. 28 ›› Issue (8): 2112221. doi: 10.13208/j.electrochem.211222
所属专题: “下一代二次电池”专题文章
收稿日期:
2021-12-22
修回日期:
2022-02-28
出版日期:
2022-08-28
发布日期:
2022-03-04
Si Chen, Song-Sheng Zheng*(), Lei-Ming Zheng, Ye-Han Zhang, Zhao-Lin Wang
Received:
2021-12-22
Revised:
2022-02-28
Published:
2022-08-28
Online:
2022-03-04
Contact:
Tel:(86-592)2188053, E-mail: 摘要:
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。
陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221.
Si Chen, Song-Sheng Zheng, Lei-Ming Zheng, Ye-Han Zhang, Zhao-Lin Wang. Optimized Electrochemical Performance of Si@C Prepared by Hydrothermal Reaction and Glucose Carbon Source[J]. Journal of Electrochemistry, 2022, 28(8): 2112221.
Sample | Glucose weight (g) | Silicon weight (g) | Reaction temperature (oC) | Reaction time (h) |
---|---|---|---|---|
CS170-1 | 2.25 | 0.9 | 170 | 9 |
CS170-2 | 4.5 | 1.35 | 170 | 9 |
CS180-1 | 2.25 | 0.9 | 180 | 9 |
CS180-2 | 4.5 | 1.35 | 180 | 9 |
CS190-1 | 2.25 | 0.9 | 190 | 9 |
CS190-2 | 4.5 | 0.9 | 190 | 9 |
CS190-3 | 4.5 | 1.35 | 190 | 9 |
CS190-4 | 4.5 | 1.8 | 190 | 9 |
CS190-5 | 4.5 | 1.35 | 190 | 6 |
CS190-6 | 4.5 | 1.35 | 190 | 12 |
CS200-1 | 4.5 | 1.35 | 200 | 6 |
CS200-2 | 4.5 | 1.35 | 200 | 9 |
CS200-3 | 2.25 | 0.9 | 200 | 9 |
[1] |
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Adv. Energy Mater., 2017, 7(3): 1601481.
doi: 10.1002/aenm.201601481 URL |
[2] |
Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430.
doi: 10.1016/j.jpowsour.2009.11.048 URL |
[3] |
Li B, Li S X, Jin Y, Zai J T, Chen M, Nazakat A, Zhan P, Huang Y, Qian X F. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities[J]. J. Mater. Chem. A, 2018, 6(42): 21098-21103.
doi: 10.1039/C8TA07576J URL |
[4] |
Kennedy B, Patterson D, Camilleri S. Use of lithium-ion batteries in electric vehicles[J]. J. Power Sources, 2000, 90(2): 156-162.
doi: 10.1016/S0378-7753(00)00402-X URL |
[5] |
Sourice J, Bordes A, Boulineau A, Alper J P, Franger S, Quinsac A, Habert A, Leconte Y, De Vito E, Porcher W, Reynaud C, Herlin-Boime N, Haon C. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J]. J. Power Sources, 2016, 328: 527-535.
doi: 10.1016/j.jpowsour.2016.08.057 URL |
[6] |
Liu L H, Lyu J, Li T H, Zhao T K. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes[J]. Nanoscale, 2016, 8(2): 701-722.
doi: 10.1039/C5NR06278K URL |
[7] |
Palomino J, Varshney D, Weiner B R, Morell G. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(36): 21125-21134.
doi: 10.1021/acs.jpcc.5b01178 URL |
[8] |
Luo Z P, Xiao Q Z, Lei G T, Li Z H, Tang C J. Si Nano-particles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380.
doi: 10.1016/j.carbon.2015.11.031 URL |
[9] |
Zhou X S, Yin Y X, Cao A M, Wan L J, Guo Y G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode[J]. ACS Appl. Mater. Interfaces, 2012, 4(5): 2824-2828.
doi: 10.1021/am3005576 URL |
[10] |
Sun C F, Karki K, Jia Z, Liao H W, Zhang Y, Li T, Qi Y, Cumings J, Rubloff G W, Wang Y H. A beaded-string silicon anode[J]. ACS Nano, 2013, 7(3): 2717-2724.
doi: 10.1021/nn4001512 URL |
[11] |
Ma Z S, Li T T, Huang Y L, Liu J, Zhou Y C, Xue D F. Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries[J]. RSC Adv., 2013, 3(20): 7398-7402.
doi: 10.1039/c3ra41052h URL |
[12] |
Lee S W, Mcdowell M T, Choi J W, Cui Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Lett., 2011, 11(7): 3034-3039.
doi: 10.1021/nl201787r URL |
[13] | Lux S F, Lucas I T, Pollak E, Passerini S, Winter M, Kostecki R. The mechanism of Hf formation in LiPF6 based organic carbonate electrolyte[J]. Electrochem. Co-mmun., 2012, 14(1): 47-50. |
[14] |
Guo S, Li H X, Bai H M, Tao Z L, Chen J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries[J]. J. Power Sources, 2014, 248: 1141-1148.
doi: 10.1016/j.jpowsour.2013.09.138 URL |
[15] |
Choi H S, Lee J G, Lee H Y, Kim S W, Park C R. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochim. Acta, 2010, 56(2): 790-796.
doi: 10.1016/j.electacta.2010.09.101 URL |
[16] |
Kim H, Cho J. Superior lithium electroactive mesoporous Si@carbon coreshell nanowires for lithium battery anode material[J]. Nano Lett., 2008, 8(11): 3688-3691.
doi: 10.1021/nl801853x URL |
[17] |
Jeong S, Lee J P, Ko M, Kim G, Park S, Cho J. Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries[J]. Nano Lett., 2013, 13(7): 3403-3407.
doi: 10.1021/nl401836c URL |
[18] |
Liu R P, Shen C, Dong Y, Qin J L, Wang Q, Iocozzia J, Zhao S Q, Yuan K J, Han C P, Li B H, Lin Z Q. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(30): 14797-14804.
doi: 10.1039/C8TA04686G URL |
[19] |
Song T, Jeon Y, Paik U. Si nanotubes array sheathed with sin/sioxny layer as an anode material for lithium ion batteries[J]. J. Electroceram., 2014, 32(1): 66-71.
doi: 10.1007/s10832-013-9871-3 URL |
[20] |
Fan Z Q, Zheng S S, He S, Ye Y Y, Liang J H, Shi A D, Wang Z L, Zheng Z F. Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diam. Relat. Mat., 2020, 107: 107898.
doi: 10.1016/j.diamond.2020.107898 URL |
[21] |
Mishra K, Zheng J M, Patel R, Estevez L, Jia H P, Luo L L, El-Khoury P Z, Li X L, Zhou X D, Zhang J G. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction[J]. Electrochim. Acta, 2018, 269: 509-516.
doi: 10.1016/j.electacta.2018.02.166 URL |
[22] |
Yang J P, Wang Y X, Chou S L, Zhang R Y, Xu Y F, Fan J W, Zhang W X, Liu H K, Zhao D Y, Dou S X. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
doi: 10.1016/j.nanoen.2015.09.016 URL |
[23] |
Bae J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite for anode in lithium ion battery[J]. J. Solid State Chem., 2011, 184(7): 1749-1755.
doi: 10.1016/j.jssc.2011.05.012 URL |
[24] |
Xu Q, Li J Y, Yin Y X, Kong Y M, Guo Y G, Wan L J. Nano/micro structured Si/C anodes with high initial coulombic efficiency in Li ion batteries[J]. Chem.-Asian J., 2016, 11(8): 1205-1209.
doi: 10.1002/asia.201600067 URL |
[25] |
Liang J, Fan Z, Chen S, Zheng S, Wang Z. A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for libs[J]. J. Alloy. Compd., 2021, 860: 158433.
doi: 10.1016/j.jallcom.2020.158433 URL |
[26] |
Kim J Y, Nguyen D T, Kang J S, Song S W. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. J. Alloy. Compd., 2015, 633: 92-96.
doi: 10.1016/j.jallcom.2015.01.309 URL |
[27] | Li B, Xiao Z J, Zai J T, Chen M, Wang H H, Liu X J, Li G, Qian X F. A candidate strategy to achieve high initial coulombic efficiency and long cycle life of Si anode materials: Exterior carbon coating on porous Si microparticles[J]. Mater. Today Energy, 2017, 5: 299-304. |
[28] |
Dou X Y, Chen M, Zai J T, De Z, Dong B X, Liu X J, Ali N, Tsega T T, Qi R R, Qian X F. Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries[J]. Sustain. Energ. Fuels, 2019, 3(9): 2361-2365.
doi: 10.1039/C9SE00281B URL |
[29] |
Wu Z Z, Ji S P, Liu T C, Duan Y D, Xiao S, Lin Y, Xu K, Pan F. Aligned Li+ tunnels in core-shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode[J]. Nano Lett., 2016, 16(10): 6357-6363.
doi: 10.1021/acs.nanolett.6b02742 URL |
[30] |
Feng K, Li M, Zhang Y N, Liu W W, Kashkooli A G, Xiao X C, Chen Z W. Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode[J]. Electrochim. Acta, 2019, 309: 157-165.
doi: 10.1016/j.electacta.2019.04.033 |
[31] | Fan Z Q, Wang Y T, Zheng S S, Xu K, Wu J Y, Chen S, Liang J H, Shi A D, Wang Z L. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery[J]. Energy Storage Mater., 2021, 39: 1-10. |
[32] |
Chen X L, Gerasopoulos K, Guo J C, Brown A, Wang C S, Ghodssi R, Culver J N. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector[J]. Adv. Funct. Mater., 2010, 21(2): 380-387.
doi: 10.1002/adfm.201001475 URL |
[33] |
Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Larbi S J S, Herlin-Boime N, Reynaud C. One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(12): 6637-6644.
doi: 10.1021/am5089742 URL |
[34] |
Momoki K, Manabe T, Li L, Yan J W. Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation[J]. Mater. Sci. Semicond. Process, 2020, 111: 104998.
doi: 10.1016/j.mssp.2020.104998 URL |
[35] |
Momoki K, Yan J W. Nanoparticle generation from various types of silicon materials by nanosecond-pulsed laser irradiation[J]. Appl. Phys. Express, 2020, 13(2): 026505.
doi: 10.35848/1882-0786/ab6935 URL |
[36] |
Li X L, Meduri P, Chen X L, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes[J]. J. Mater. Chem., 2012, 22(22): 11014-11017.
doi: 10.1039/c2jm31286g URL |
[37] |
Cui L F, Yang Y, Hsu C M, Cui Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Lett., 2009, 9(9): 3370-3374.
doi: 10.1021/nl901670t URL |
[38] |
Han H, Huang Z P, Lee W. Metal-assisted chemical etching of silicon and nanotechnology applications[J]. Nano Today, 2014, 9(3): 271-304.
doi: 10.1016/j.nantod.2014.04.013 URL |
[39] |
Shen D Z, Huang C F, Gan L H, Liu J, Gong Z L, Long M N. Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(9): 7946-7954.
doi: 10.1021/acsami.7b16724 URL |
[40] |
Wu J, Tu W M, Zhang Y, Guo B L, Li S S, Zhang Y, Wang Y D, Pan M. Poly-dopamine coated graphite oxide/ silicon composite as anode of lithium ion batteries[J]. Powder Technol., 2017, 311: 200-205.
doi: 10.1016/j.powtec.2017.01.063 URL |
[41] | Yu H J, Li X T, Fang H, Chen Q Y, Jiang F, Shao G. Gold/silicon nanocomposites: synthesis, characterization, and application in detection of dopamine[J]. Mater. Sci., 2011, 22(6): 690-693. |
[42] |
Liang J H, Chen S, Fan Z Q, Zheng S S, Wang Z L. N-doped C/Si@damo composite material using PVP as the carbon source for lithium-ion batteries anode[J]. Ionics, 2021, 27(10): 4185-4196.
doi: 10.1007/s11581-021-04220-9 URL |
[43] |
Bhagavannarayana G, Sharma S N, Sharma R K, Lakshmikumar S T. A comparison of the properties of porous silicon formed on polished and textured (100) Si: High resolution XRD and PL studies[J]. Mater. Chem. Phys., 2006, 97(2-3): 442-447.
doi: 10.1016/j.matchemphys.2005.08.041 URL |
[44] |
Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem.-Eur. J., 2009, 15(16): 4195-4203.
doi: 10.1002/chem.200802097 pmid: 19248078 |
[45] | Huang Y, Pemberton J E. Synthesis of uniform, spherical sub-100nm silica particles using a conceptual modification of the classic lamer model[J]. Colloid Surf. A-Physi-cochem. Eng. Asp., 2010, 360(1-3): 175-183. |
[1] | 李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211-. |
[2] | 戴琬琳, 鲁志伟, 叶建山. 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学(中英文), 2019, 25(2): 260-269. |
[3] | 李晨露,彭花萍,黄种南,盛依伦,吴佩文,林新华. 基于WS2量子点材料固定葡萄糖氧化酶的直接电化学及其生物传感研究[J]. 电化学(中英文), 2017, 23(1): 53-58. |
[4] | 樊磊1,赵煜1,李婷1,原沁波1,2,王恩志2,王晓斌1,王俊文1*. 葡萄糖乙酸钠不同基质微生物燃料电池电化学性能对比研究[J]. 电化学(中英文), 2016, 22(1): 81-87. |
[5] | 何芳,覃晓丽,傅迎春,陈超,谢青季*,姚守拙. 酶法合成的葡萄糖氧化酶-纳米金复合物的直接电化学与生物传感[J]. 电化学(中英文), 2014, 20(6): 515-520. |
[6] | 林玉萍,林幼秀,周倩,唐点平*. Nafion/硫堇/铂纳米线复合电极的葡萄糖电催化活性[J]. 电化学(中英文), 2014, 20(6): 538-541. |
[7] | 王琨琦,张作明*,邢巍*,刘长鹏,周星. 孔蛋白-磷脂仿生膜的葡萄糖氧化酶电化学[J]. 电化学(中英文), 2014, 20(5): 439-443. |
[8] | 范艳群,陈庆阳,夏金梅,许建中,徐洵,许晨*. 电化学-积分脉冲安培法的氨基葡萄糖盐酸盐检测[J]. 电化学(中英文), 2014, 20(2): 164-170. |
[9] | 彭花萍,查代君,黄郑隽,陈伟,刘爱林*,林新华*. 二茂铁功能化Fe3O4/碳纳米管/壳聚糖复合膜葡萄糖生物传感电极的研究[J]. 电化学(中英文), 2014, 20(1): 33-38. |
[10] | 李艳彩*,黄富英,李顺兴,陈杰,冯树清,王飞. 基于叶片状氧化铜纳米材料的无酶葡萄糖传感电极[J]. 电化学(中英文), 2014, 20(1): 80-84. |
[11] | 王敏, 王炯, 王凤彬, 夏兴华. 1-芘丁酸/石墨烯复合物的电化学性质及其在葡萄糖传感器上的应用[J]. 电化学(中英文), 2012, 18(5): 450-456. |
[12] | 王清芝, 王炜. Fe(Ⅲ)-草酸-葡萄糖酸钙媒质体系间接电化学还原及棉织物染色的研究[J]. 电化学(中英文), 2011, 17(4): 444-447. |
[13] | 褚道葆, 查龙武, 王树西, 王建, 肖英, 侯源源, 何建国, 张雪娇, . 离子液体中CNT/nanoTiO_2-Pt膜电极电催化氧化葡萄糖[J]. 电化学(中英文), 2009, 15(3): 299-303. |
[14] | 王胜, 雷瑛, 时康, . 电化学诱导聚合甲基丙烯酸膜及葡萄糖酶电极制备[J]. 电化学(中英文), 2009, 15(3): 255-259. |
[15] | 梁家华, 周春梅, 王红娟, . EC-Pt/CNTs葡萄糖氧化酶电极[J]. 电化学(中英文), 2008, 14(4): 418-421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||