电化学(中英文) ›› 2022, Vol. 28 ›› Issue (8): 2110191. doi: 10.13208/j.electrochem.211019
罗大娟, 刘冰倩*(), 覃蒙颜, 高荣, 苏丽霞, 苏永欢
收稿日期:
2021-10-20
修回日期:
2021-12-20
出版日期:
2022-08-28
发布日期:
2022-01-10
通讯作者:
* Tel: (86-851)8830717, E-mail: 基金资助:
Da-Juan Luo, Bing-Qian Liu*(), Meng-Yan Qin, Rong Gao, Li-Xia Su, Yong-Huan Su
Received:
2021-10-20
Revised:
2021-12-20
Published:
2022-08-28
Online:
2022-01-10
摘要:
亚硝酸盐是一种广泛存在的原料,长期食用会对人体健康不利甚至致癌。因此,简单、灵敏的亚硝酸盐检测方法的开发具有非常重要的意义。本文合成了金/还原氧化石墨烯/羟基氧化铁(Au/rGO/FeOOH)复合材料,并通过SEM、 XRD和EDX等测试进行了材料表征。将合成的复合材料滴涂在氧化氟锡(FTO)电极表面,利用它们的协同催化氧化性能,成功构建了一步检测亚硝酸盐(NO2-)的新型电化学传感器。在最佳优化实验条件下, 通过差分脉冲伏安法实现NO2-的定量检测, 其线性范围为0.001 ~ 5 mmol·L-1, 检出限为0.8 μmol·L-1(S/N = 3), 且响应时间小于2 s。同时, 所制备的传感器表现出良好的选择性和重现性, 也能用于实际样品的测定。
罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191.
Da-Juan Luo, Bing-Qian Liu, Meng-Yan Qin, Rong Gao, Li-Xia Su, Yong-Huan Su. A Novel Electrochemical Sensor Based on Au/rGO/FeOOH for One-Step Detection of Nitrite[J]. Journal of Electrochemistry, 2022, 28(8): 2110191.
表1
NO2-检测方法的比较
Method | Linear range (mmol·L-1) | Detected limit (μmol·L-1) | Ref. |
---|---|---|---|
HPLC | 0.001 ~ 0.8 | 0.075 | [16] |
Colorimetric method | 0.05 ~ 1 | 25 | [17] |
Fluorescent assay | 0.01 ~ 0.225 | 3.4 | [18] |
Spectrophotometric method | 0.01 ~ 0.84 | 0.39 | [19] |
Differential pulse voltammetry | 0.005 ~ 0.8 | 1.5 | [20] |
Amperometric method | 0.0049 ~ 1.184 | 3.3 | [21] |
Cyclic voltammetry | 0 ~ 1.38×104 | 1.39 | [22] |
Differential pulse voltammetry | 0.0025 ~ 1.25 | 0.15 | [23] |
Amperometric method | 0.002 ~ 0.425 | 0.7 | [24] |
Amperometric method | 0.001 ~ 1 | 0.018 | [25] |
Differential pulse voltammetry | 12 ~ 1.2×103 | 11.4 | [26] |
Electrochemical sensor | 0.001 ~ 5 | 0.8 | This work |
[1] |
Shpaizer A, Nussinovich A, Kanner J, Tirosh O. S-nitroso-N-acetylcysteine generates less carcinogenic N-nitrosamines in meat products than nitrite[J]. J. Agric. Food Chem., 2018, 66(43): 11459-11467.
doi: 10.1021/acs.jafc.8b04549 URL |
[2] | Du J(杜娟), Wang Q H(王青华), Liu L Q(刘利强). Nitrite application harmful analys is and its subs titute research in meat product[J]. Food Sci. Technol.(食品科技), 2007, (8): 166-169. |
[3] | Li G(李刚), Qin C M(覃春美), Zhang Y(张燕), Yin L(尹雷), Wang D J(汪代杰). Diethyl nitrosamine induced increased IFN-λ expression in early hepatocellular carcinoma of rats[J]. Basic Clin. Med. (基础医学与临床), 2019, 39(3): 402-403. |
[4] | Sheng L(盛丽), Zhu J L(朱金林), Han X Q(韩小茜), Wang H X(王海霞). Fluorospectrophotometric determination of traces of nitrite ion by its fluorescence quenching effect oil thionine[J]. Phys. Test. Chem. Anal. (Part B)(理化检验(化学分册)), 2008, 44(12): 1182-1183+1186. |
[5] |
Higuchi K, Motomizu S. Flow-injection spectrophotometric determination of nitrite and nitrate in biological samples. Original papers[J]. Anal. Sci., 1999, 15(2): 129-134.
doi: 10.2116/analsci.15.129 URL |
[6] |
Ding X L, Yang J, Dong Y M. Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs[J]. J. Pharm. Anal., 2018, 8(2): 75-85.
doi: 10.1016/j.jpha.2018.02.001 URL |
[7] |
Kozub B R, Rees N V, Compton R G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?[J]. Sens. Actuator B-Chem., 2010, 143(2): 539-546.
doi: 10.1016/j.snb.2009.09.065 URL |
[8] |
Tajiki A, Abdouss M, Sadjadi S, Mazinani S. Voltammetric detection of nitrite anions employing imidazole functionalized reduced graphene oxide as an electrocatalyst[J]. Electroanalysis, 2020, 32(10): 2290-2298.
doi: 10.1002/elan.202060187 URL |
[9] | Lei P, Zhou Y, Zhu R Q, Wu S, Jiang C B, Dong C, Liu Y, Shuang S M. Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite[J]. Micro-chim. Acta, 2020, 187(10): 572. |
[10] |
Iqbal W, Batool M, Hameed A, Abbas S, Nadeem M A. Boosting the activity of FeOOH via integration of ZIF-12 and graphene to efficiently catalyze the oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021, 46(49): 25050-25059.
doi: 10.1016/j.ijhydene.2021.05.037 URL |
[11] |
Li C C, Chen D L, Wang Y Y, Lai X Y, Peng J, Wang X H, Zhang K X, Cao Y. Simultaneous electrochemical detection of nitrite and hydrogen peroxide based on 3D Au-rGO/FTO obtained through a one-step synthesis[J]. Sensors, 2019, 19(6): 1304.
doi: 10.3390/s19061304 URL |
[12] | Shi W P(石维平), Cai J(蔡杰), Yang Y N(杨雅妮), Luo H H(罗欢欢), Liu B Q(刘冰倩), Fu Q P(付秋平). Portable glucose meter for detection of mercury (II) ion[J]. Chin. J. Anal. Chem.(分析化学), 2019, 47(9): 1337-1343. |
[13] |
Zhou Q, Lin Y X, Shu J, Zhang K Y, Yu Z Z, Tang D P. Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system[J]. Biosens. Bioelectron., 2017, 98: 15-21.
doi: 10.1016/j.bios.2017.06.033 URL |
[14] |
Zou L N, Yang L X, Zhan Y, Huang D, Ye B X. Photoelec-trochemical aptasensor for thrombin based on Au-rGO-CuS as signal amplification elements[J]. Microchim. Acta, 2020, 187(8): 433.
doi: 10.1007/s00604-020-04380-x URL |
[15] |
Duan C Q, Bai W S, Zheng J B. Non-enzymatic sensors based on a glassy carbon electrode modified with Au nanoparticles/polyaniline/SnO2 fibrous nanocomposites for nitrite sensing[J]. New J. Chem., 2018, 42(14): 11516-11524.
doi: 10.1039/C8NJ01461B URL |
[16] |
Wu A G, Duan T T, Tang D, Xu Y H, Feng L, Zheng Z G, Zhu J X, Wang R S, Zhu Q. Determination of nitric oxide-derived nitrite and nitrate in biological samples by HPLC coupled to nitrite oxidation[J]. Chromatographia, 2013, 76(23-24): 1649-1655.
doi: 10.1007/s10337-013-2529-0 URL |
[17] |
Singhaphan P, Unob F. Thread-based platform for nitrite detection based on a modified Griess assay[J]. Sens. Actuator B-Chem., 2021, 327: 128938.
doi: 10.1016/j.snb.2020.128938 URL |
[18] |
Zhou D L, Huang H, Wang Y. Sensitive and selective detection of nitrite ions with highly fluorescent glutathione-stabilized copper nanoclusters[J]. Anal. Methods, 2017, 9(38): 5668-5673.
doi: 10.1039/C7AY02035J URL |
[19] |
Lo H S, Lo K W, Yeung C F, Wong C Y. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex[J]. Anal. Chim. Acta, 2017, 990: 135-140.
doi: 10.1016/j.aca.2017.07.018 URL |
[20] |
Yang Y J, Li W K. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite[J]. Biosens. Bioelectron., 2014, 56: 300-306.
doi: 10.1016/j.bios.2014.01.037 pmid: 24530832 |
[21] |
Sudha V, Kumar S M S, Thangamuthu R. Hierarchical porous carbon derived from waste amla for the simultaneous electrochemical sensing of multiple biomolecules[J]. Colloid Surf. B-Biointerfaces, 2019, 177: 529-540.
doi: 10.1016/j.colsurfb.2019.01.029 URL |
[22] |
Terbouche A, Lameche S, Ait-Ramdane-Terbouche C, Guerniche D, Lerari D, Bachari K, Hauchard D. A new electrochemical sensor based on carbon paste electrode/Ru (III) complex for determination of nitrite: Electroche-mical impedance and cyclic voltammetry measurements[J]. Measurement, 2016, 92: 524-533.
doi: 10.1016/j.measurement.2016.06.034 URL |
[23] |
Bao Z L, Zhong H, Li X R, Zhang A R, Liu Y X, Chen P, Cheng Z P, Qian H Y. Core-shell Au@Ag nanoparticles on carboxylated graphene for simultaneous electrochemical sensing of iodide and nitrite[J]. Sens. Actuator B-Chem., 2021, 345: 130319.
doi: 10.1016/j.snb.2021.130319 URL |
[24] |
Ghanei-Motlagh M, Taher M A. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing[J]. Biosens. Bioelectron., 2018, 109: 279-285.
doi: S0956-5663(18)30158-1 pmid: 29573727 |
[25] | Zhou F L(周福玲), Xiong X L(熊小莉), Sun X P(孙旭平). High-efficiency nitrite sensor based on CoP nano-wire array[J]. J. Electrochem. (电化学), 2019, 25(2): 252-259. |
[26] | Luo T R(罗婷容), Shi W P(石维平), Liu B Q(刘冰倩), Nie F Q(聂方钦), Deng X J(邓雪锦), Liu Y Z(刘跃芝). A label-free homogenous electrochemical sensor for rapid detection of NO2- in water[J]. Chin. J. Anal. Lab.(分析试验室), 2019, 38(9): 1035-1038. |
[1] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[4] | 戴琬琳, 鲁志伟, 叶建山. 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学(中英文), 2019, 25(2): 260-269. |
[5] | 董鹏飞,李娜,赵海燕,崔敏,张聪,任聚杰,藉雪平. Keggin 型磷钨酸盐修饰碳糊电极传感多巴胺的研究[J]. 电化学(中英文), 2018, 24(5): 555-562. |
[6] | 王慧娟. 超薄Co3O4纳米片薄膜制备及其电化学传感器性能[J]. 电化学(中英文), 2016, 22(6): 631-635. |
[7] | 董莹,王勇,邢欢欢,屈建莹*. Au/Fe3O4/壳聚糖纳米复合物NO2-传感电极[J]. 电化学(中英文), 2015, 21(1): 85-90. |
[8] | 林丽清,赵成飞,蒋周倩,翁少煌,谢晓兰,林新华*. 基于DNA聚合酶I的新型电化学传感器及其胰腺癌K-ras基因点突变检测[J]. 电化学(中英文), 2015, 21(1): 72-77. |
[9] | 杨妍,喻鹏,张小华*,陈金华*. “金标银染”放大技术的羟基自由基灵敏检测[J]. 电化学(中英文), 2015, 21(1): 22-28. |
[10] | 黄春芳,姚桂红,邱建丁*. 表面分子印迹磁性纳米粒子的制备及其血红蛋白传感应用[J]. 电化学(中英文), 2014, 20(6): 521-526. |
[11] | 朱成周,韩磊,董绍俊*. 基于功能性纳米材料的新型电化学界面的构筑以及相关应用(英文)[J]. 电化学(中英文), 2014, 20(3): 219-233. |
[12] | 李明轩, 欧洁连, 陈声培, 王鹏, 许斌斌, 孙世刚. FeCo合金纳米电催化剂制备及其性能研究[J]. 电化学(中英文), 2013, 19(2): 125-129. |
[13] | 刘斌, 黄咏星, 连惠婷, 吴红梅. 分子印迹电化学传感器的制备及其对啶虫脒的响应特性[J]. 电化学(中英文), 2011, 17(3): 323-328. |
[14] | 何苗, 陈伟, 许雄伟, 刘爱林, 林新华, . 酶联放大安培检测基因传感器的封闭方式[J]. 电化学(中英文), 2010, 16(2): 227-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||