电化学(中英文) ›› 2022, Vol. 28 ›› Issue (5): 2110021. doi: 10.13208/j.electrochem.211002
收稿日期:
2021-12-15
修回日期:
2021-12-21
出版日期:
2022-05-28
发布日期:
2022-01-02
通讯作者:
* Tel: (86)13671230955, E-mail: menghm16@126.com
E-mail:menghm16@126.com
基金资助:
Cui Ai-Lin, Bai Yang, Yu Hong-Ying, Meng Hui-Min*()
Received:
2021-12-15
Revised:
2021-12-21
Published:
2022-05-28
Online:
2022-01-02
摘要:
由于燃料电池催化剂的电催化活性与Pt颗粒尺寸、催化剂载体、辅助催化剂的关系仍不清楚。为此,本文采用FESEM、 XRD、 BET、 TEM和CV等方法,以存在Pt纳米颗粒、 CNx纳米线、 TiO2辅助催化剂的多成分复杂结构Pt/TiO2-CNx体系为研究对象,进行了TiO2锐钛矿(A)/金红石(R)相含量对Pt电催化剂电化学活性面积的研究。结果表明,TiO2在700 oC ~ 900 oC热处理过程中发生锐钛矿-金红石相变,同时伴随着两相晶粒尺寸的长大,锐钛矿相在900 oC时完全转化为金红石相。TEM结果表明超细小Pt纳米颗粒成功负载在TiO2-CNx载体表面,粒径尺寸范围为1.8 ~ 2.8 nm。TiO2 (A)/(R)相含量对TiO2-CNx载体的BET比表面积和Pt/TiO2-CNx催化剂真实“有效的”电化学活性面积(ECSA)都存在“火山形”效应。当金红石相含量为25%时,TiO2(25%R)-CNx载体和Pt/TiO2(25%R)-CNx催化剂具有最大的比表面积和最多的电化学活性位点。原因推测可能是随着金红石相含量的增加,当金红石含量为25%时Pt纳米颗粒和TiO2(25%R)-CNx载体之间存在强烈的金属-载体相互作用,可以锚定超细小Pt纳米颗粒,导致Pt/TiO2(25%R)-CNx催化剂具有最高的ECSA。因此,Pt/TiO2(25%R)-CNx较适宜做燃料电池的催化剂。
崔爱林, 白洋, 俞宏英, 孟惠民. Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应[J]. 电化学(中英文), 2022, 28(5): 2110021.
Cui Ai-Lin, Bai Yang, Yu Hong-Ying, Meng Hui-Min. Electrocatalytic “Volcano-Type” Effect of Nano-TiO2 (A)/(R) Phase Content in Pt/TiO2-CNx Catalyst[J]. Journal of Electrochemistry, 2022, 28(5): 2110021.
[1] |
Liao J H, Ding W, Tao S C, Nie Y, Li W, Wu G P, Chen S G, Li L, Wei Z D. Carbon supported IrM (M = Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium[J]. Chinese J. Catal., 2016, 37(7): 1142-1148.
doi: 10.1016/S1872-2067(15)61064-6 URL |
[2] |
Lin R B, Shih S M. Effects of mass transfer on kinetics of hydrogen oxidation reaction at Nafion/Pt-black thin-film electrodes[J]. J. Taiwan Inst. Chem. E., 2013, 44(3): 393-401.
doi: 10.1016/j.jtice.2012.12.001 URL |
[3] |
Babić B M, Vračar L M, Radmilović V, Krstajić N V. Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction[J]. Electrochim. Acta, 2006, 51(18): 3820-3826.
doi: 10.1016/j.electacta.2005.10.048 URL |
[4] |
Serrano-Ruiz J C, López-Cudero A, Solla-Gullón J, Sepúl-veda-Escribano A, Aldaz A, Rodríguez-Reinoso F. Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon[J]. J. Catal., 2008, 253(1): 159-166.
doi: 10.1016/j.jcat.2007.10.010 URL |
[5] |
Calvillo L, Lázaro M J, García-Bordejé E, Moliner R, Cabot P L, Esparbé I, Pastor E, Quintana J J. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells[J]. J. Power Sources, 2007, 169(1): 59-64.
doi: 10.1016/j.jpowsour.2007.01.042 URL |
[6] |
Hayden B E. Particle size and support effects in electrocatalysis[J]. Accounts Chem. Res., 2013, 46(8): 1858-1866.
doi: 10.1021/ar400001n pmid: 23719578 |
[7] |
Rodgers M P, Bonville L J, Kunz H R, Slattery D K, Fenton J M. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime[J]. Chem. Rev., 2012, 112(11): 6075-6103.
doi: 10.1021/cr200424d URL |
[8] |
Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J. Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes[J]. ChemCatChem, 2012, 4(2): 228-235.
doi: 10.1002/cctc.201100308 URL |
[9] |
Jia J C, Wang H, Ji S, Yang H J, Li X S, Wang R F. SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction[J]. Electrochim. Acta. 2014, 141: 13-19.
doi: 10.1016/j.electacta.2014.07.020 URL |
[10] |
Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chem. Rev., 2011, 111(12): 7625-7651.
doi: 10.1021/cr100060r URL |
[11] |
Zhao X, Zhu J B, Liang L, Liao J H, Liu C P, Xing W. Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction[J]. J. Mater. Chem., 2012, 22(37): 19718-19725.
doi: 10.1039/c2jm33926a URL |
[12] |
Li Z H, Yang K, Liu G, Deng G F, Li J Q, Li G, Yue R L, Yang J, Chen Y F. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for benzene oxidation[J]. Catal. Lett., 2014, 144(6): 1080-1087.
doi: 10.1007/s10562-014-1245-1 URL |
[13] |
Chung S L, Wang C M. A sol-gel combustion synthesis method for TiO2 powders with enhanced photocatalytic activity[J]. J. Sol-Gel Sci. Techn., 2011, 57(1): 76-85.
doi: 10.1007/s10971-010-2326-2 URL |
[14] |
von Kraemer S, Wikander J, Lindbergh G, Lundblad A, Palmqvist A E C. Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell[J]. J. Power Sources, 2008, 180(1): 185-190.
doi: 10.1016/j.jpowsour.2008.02.023 URL |
[15] |
Qin Y H, Li Y F, Lv R L, Wang T L, Wang W G, Wang C W. Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support[J]. J. Power Sources, 2015, 278: 639-644.
doi: 10.1016/j.jpowsour.2014.12.096 URL |
[16] |
Antoniassi R M, Quiroz J, Barbosa E C M, Parreira L S, Isidoro R A, Spinacé E V, Silva J C M, Camargo P H C. Improving the electrocatalytic activities and CO tolerance of Pt NPs by incorporating TiO2 nanocubes onto carbon supports[J]. ChemCatChem, 2021, 13(8): 1931-1939.
doi: 10.1002/cctc.202002066 URL |
[17] |
Stühmeier B M, Selve S, Patel M U M, Geppert T N, Gasteiger H A, El-Sayed H A. Highly selective Pt/TiOx catalysts for the hydrogen oxidation reaction[J]. ACS Appl. Energy Mater., 2019, 2(8): 5534-5539.
doi: 10.1021/acsaem.9b00718 URL |
[18] |
Connelly K, Wahab A K, Idriss H. Photoreaction of Au/TiO2 for hydrogen production from renewables: A review on the synergistic effect between anatase and rutile phases of TiO2[J]. Mater. Renew. Sustain. Energy, 2012, 1(1): 3.
doi: 10.1007/s40243-012-0003-9 URL |
[19] |
You Y F, Xu C H, Xu S S, Cao S, Wang J P, Huang Y B, Shi S Q. Structural characterization and optical property of TiO2 powders prepared by the sol-gel method[J]. Ceram. Int., 2014, 40(6): 8659-8666.
doi: 10.1016/j.ceramint.2014.01.083 URL |
[20] |
Miszczak S, Pietrzyk B. Anatase-rutile transformation of TiO2 sol-gel coatings deposited on different substrates[J]. Ceram. Int., 2015, 41(6): 7461-7465.
doi: 10.1016/j.ceramint.2015.02.066 URL |
[21] | Gao R Q(高如琴), Zhu L F(朱灵峰), Guo Y P(郭毅萍), Zhang R T(张润涛). Effect of heat treatment temperature on photocatalytic property of nano TiO2 films[J]. J. Silicates (硅酸盐学报), 2011, 39(2): 325-328+333. |
[22] |
Tang J, Meng H M, He Y F. Energy-saving synthesis of electrolytic manganese dioxide using oxygen cathode with Pt/TiO2-CNx nanocatalysts[J]. J. Appl. Electrochem., 2017, 47(5): 653-659.
doi: 10.1007/s10800-017-1065-2 URL |
[23] | Tang J, Meng H M. TiO2-modified CNx nanowires as a Pt electrocatalyst support with high activity and durability for the oxygen reduction reaction[J]. Phy. Chem. Chem. Phys., 2016, 18(3): 1500-1506. |
[24] |
Tang J, Meng H M, Li S, Yu M H, Li H, Shi J H. The energy saving mechanism of gas diffusion electrode based on Pt/C catalyst for saving energy and green electrodeposition of manganese dioxide[J]. Electrochim. Acta, 2015, 170: 92-97.
doi: 10.1016/j.electacta.2015.04.096 URL |
[25] |
Tang J, Meng H M, Liang X. Gas diffusion electrode with platinum/titanium nitride-carbon nitride nanocatalysts for the energy-saving and environment-friendly electrodeposition of manganese dioxide[J]. J. Clean. Prod., 2016, 137: 903-909.
doi: 10.1016/j.jclepro.2016.07.187 URL |
[26] | Ma X L(马旭莉), Yang Y Y(杨言言), Wang Z D(王忠德), Hao X G(郝晓刚). Determination of electroactive area of porous membrane electrode by electrodeposition of nickel ferricyanide[J]. Rare metal mater. Eng.(稀有金属材料与工程), 2013, 42(4): 776-780. |
[27] | Fan M Y(范梦阳), Qiao J L(乔锦丽). Study on high efficiency electrochemical reduction of CO2 by CuO/Cu2O nano catalyst with multistage structure[C]// Annual conference of Chinese Society of Environmental Sciences(中国环境科学学会学术年会), China, Sichuan, 2014: 5246-5256. |
[28] |
Tzorbatzoglou F, Brouzgou A, Jing S Y, Wang Y, Song S Q, Tsiakaras P. Oxygen reduction and hydrogen oxidation reaction on novel carbon supported PdxIry electrocatalysts[J]. Int. J. Hydrogen Energ., 2018, 43(26): 11766-11777.
doi: 10.1016/j.ijhydene.2018.02.071 URL |
[29] |
Bakardjieva S, Šubrt J, Štengl V, Dianez M J, Sayagues M J. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase[J]. Appl. Cataly. B-Environ., 2005, 58(3-4): 193-202.
doi: 10.1016/j.apcatb.2004.06.019 URL |
[30] |
Lv K L, Yu J G, Deng K J, Li X H, Li M. Effect of phase structures on the formation rate of hydroxyl radicals on the surface of TiO2[J]. J. Phy. Chem. Solids, 2010, 71(4): 519-522.
doi: 10.1016/j.jpcs.2009.12.026 URL |
[31] |
Yan M C, Chen F, Zhang J L, Anpo M. Preparation of controllable crystalline titania and study on the photocatalytic properties[J]. J. Phys. Chem. B, 2005, 109(18): 8673-8678.
doi: 10.1021/jp046087i URL |
[32] |
Ma X, Xue L H, Li X B, Yang M, Yan Y W. Controlling the crystalline phase of TiO2 powders obtained by the solution combustion method and their photocatalysis activity[J]. Ceram. Int. 2015, 41(9): 11927-11935.
doi: 10.1016/j.ceramint.2015.05.161 URL |
[33] |
Catauro M, Tranquillo E, Poggetto G, Pasquali M, Dell’Era A, Ciprioti S V. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method[J]. Mater., 2018, 11(12): 2364.
doi: 10.3390/ma11122364 URL |
[34] |
Bakardjieva S, Šubrt J, Štengl V, Večerníková E, Bezdička P. Comparison of photocatalytical properties of anata-se and rutile TiO2 in degradation of 4-Chlorophenol in aqueous solution[J]. Solid State Phenom., 2003, 90-91:7-12.
doi: 10.4028/www.scientific.net/SSP.90-91.7 URL |
[35] | Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electro-chem. Solid SL, 2004, 7(1): A19-A22. |
[36] |
Ohno T, Tokieda K, Higashida S, Matsumura M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene[J]. Appl. Catal. A-Gen., 2003, 244(2): 383-391.
doi: 10.1016/S0926-860X(02)00610-5 URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[4] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[5] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[6] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[7] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[8] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[9] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[10] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[11] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[12] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
[13] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[14] | 马恩辉, 刘旭坡, 申涛, 王得丽. 醇盐自模板法构筑碳封装NiFeV基电催化剂用于析氧反应[J]. 电化学(中英文), 2023, 29(11): 211103-. |
[15] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||