[1] Zhang C, Cui H Y, Han Y F, et al. Development of abiomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl[J]. Food Chemistry, 2018, 240(1): 893-897.
[2] Liu Z M, Zang X H, Liu W H, et al. Novel method for the determination of five carbamate pesticides in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography[J]. Chinese Chemical Letters, 2009, 20(2): 213-216.
[3] Cheng X, Wang Q L, Zhang S, et al. Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode[J]. Talanta, 2007, 71(3): 1083-1087.
[4] Oh-Shin Y S, Ko M, Shin H S, et al. Simultaneous quantification of insecticides including carbaryl in drinking water by gas chromatography using dual electron-capture and nitrogen-phosphorus detection[J]. Journal of Chromatography A, 1997, 769(2): 2285-291.
[5] Patil V B, Shingare M S. Thin-layer chromatographic detection of carbaryl using phenylhydrazine hydrochloride [J].Journal of Chromatography A, 1993, 653(1): 181-183.
[6] Totti S, Fernández M, Ghini S, et al. Application of matrix solid phase dispersion to the determination of imidacloprid, carbaryl, aldicarb, and their main metabolites in honeybees by liquid chromatography-mass spectrometry detection[J]. Talanta, 2006, 69(3): 724-729.
[7] Song Y H, Chen J G, Sun M, et al. A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoringcarbamate pesticides in real samples[J]. Journal of Hazardous Materials, 2016, 304(3):103-109.
[8] Kestwal R M, Bagal-Kestwal D, Chiang B, et al. Fenugreek hydrogel-agarose composite entrapped gold nano-particles for acetylcholinesterase based biosensor for carbamates detection[J]. Analytica Chimica Acta, 2015, 886(7): 143-150.
[9] Cesarino I, Moraes F C, Lanza M, et al. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes[J]. Food Chemistry, 2012, 135(3): 873-879.
[10] Liu Q, Fei A, Huan J, et al. Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/
graphene oxide nanoribbons nanostructure[J]. Journal of Electroanalytical Chemistry, 2015, 740(3): 8-13.
[11] Hatefi-Mehrjardi A. Bienzyme self-assembled monolayer on gold electrode: An amperometric biosensor for carbaryldetermination[J]. Electrochimica Acta, 2013, 114(12): 394-402.
[12] Li Y, Shi L Y, Han G Y, et al. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network[J]. Sensors and Actuators B: Chemical, 2017, 238(1): 945-953.
[13] Zhang Y, Arugula M A, Wales M, et al. A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides[J]. Biosensors and Bioelectronics, 2015, 67(5): 287-295.
[14] Zhou L Y, Zhang X, Ma L, et al. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection[J]. Biochemical Engineering Journal, 2017, 128(12): 243-249.
[15] Han X J, Huang W M, Jia J B, et al. Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2[J]. Biosensors and Bioelectronics, 2002, 17(9): 741-746.
[16] Han X J, Cheng W L, Zhang Z L, et al. Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles[J]. BBA-Bioenergetics, 2002,1556(2/3): 273-277.
[17] Wang K Q, Yang H, Zhu L, et al. Direct electron transfers and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15[J]. Electrochimica Acta, 2009, 54(20): 4626-4630.
[18] Xu X(徐璇), Lu J S(卢菊生), Liu S Q(刘松琴). Fabrication and application of cytochrome P450 electrochemcial biosensor in drug metabolism[J]. Journal of Electrochemistry(电化学), 2015, 21(1): 45-52.
[19] Chen D F, Liu Z N, Fu J Y, et al. Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos[J]. Journal of Electroanalytical Chemistry, 2017, 801(9): 185-191.
[20] Lu X, Tao L, Song D D, et al. Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides[J]. Sensors and Actuators B: Chemical, 2018, 255(2): 2575-2581.
[21] Huang Q L, Wang Y, Lei L, et al. Photoelectrochemical biosensor for acetylcholinesterase activity study based on metal oxide semiconductor nanocomposites[J]. Journal of Electroanalytical Chemistry, 2016, 781(11): 377-382.
[22] Cui H F, Wu W W, Li M M, et al. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides[J]. Biosensors and Bioelectronics, 2018, 99(1): 223-229.
[23] Wang K, Tang J, Zhang Z, et al. Laccase on Black Pearl 2000 modified glassy carbon electrode: Characterization of direct electron transfer and biological sensing properties for pyrocatechol[J]. Electrochimica Acta, 2012, 70(5): 112-117.
[24] Chen D, Zhang W, Liu D, et al. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Aunanocomposite for enhanced detection of methyl parathion[J]. Biosensors and Bioelectronics, 2010, 25(6): 1370-1375.
[25] Shamagsumova R V, Shurpik D N, Padnya P L, et al. Acetylcholinesterase biosensor for inhibit or measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene[J]. Talanta, 2015, 144(11): 559-568.
[26] Raghu P, Kumara Swamy B E, Madhusudana Reddy T, et al. Sol-gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method[J]. Bioelectrochemistry, 2012, 83(2): 19-24.
[27] Li Y P, Zhang Y Y, Han G Y, et al. An acetylcholinesterase biosensor based on graphene/polyaniline composite film for detection of pesticides[J]. Chinese Journal of Chemistry, 2016, 34(1): 82-88.
[28] Caetano J, Machado S A S. Determination of carbaryl in tomato in natura using an amperometric biosensor based on the inhibition of acetylcholinesterase activity[J]. Sensors and Actuators B: Chemical, 2008, 129(1): 40-46.