[1] Berenguer R, Sieben J M, Quijada C, et al. Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO2 -Sbanodes in an alkaline medium[J]. Applied Catalysis B: Environmental,2016, 199: 394-404.
[2] Ajeel M A, Aroua M K, Wan M A W D, et al. Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2-chlorophenol at carbon black diamond composite electrode[J]. Industrial &Engineering Chemistry Research, 2017, 56(6): 1652-1660.
[3] Elnaas M H, Alzuhair S, Alhaija M A. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon[J]. Chemical Engineering Journal.2010, 162(3): 997-1005.
[4] Abbassian K, Kargari A, Kaghazchi T. Phenol removal from aqueous solutions by a novel industrial solvent [J].Chemical Engineering Communications, 2015, 202(3): 408-413.
[5] Luan J, Plaisier A. Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process[J]. Membrane Science, 2004, 229(1/2): 235-239.
[6] Petronela C, Hlihor R M, Apostol L C, et al. Aerobic biodegradation of phenol by activated sludge in a batch reactor[J]. Environmental Engineering & Management Journal, 2012, 11(11): 2053-2058.
[7] Li H Q, Han H J, Du M A, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor[J]. Bioresource Technology.2011, 102(7): 4667-4673.
[8] Cordova-Rosa S M, Dams R I, Cordova-Rosa E V, et al.Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant [J].Journal of Hazardous Materials, 2009, 164(1): 61-66.
[9] Yang S X, Zhu WP, Wang J B, et al. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed bed reactor [J]. Journal of Hazardous Materials, 2008, 153(3): 1248-1253.
[10] Li P Q, Zhao G H, Li M F, et al. Design and high efficient photoelectric-synergistic catalytic oxidation activity of 2D macroporous SNO2/1D TiO2 nanotubes [J]. Applied Catalysis B: Environmental, 2012, 111(6): 578-585.
[11] Guedes A M F M, Madeira L M P, Rui A R B, et al. Fenton oxidation of cork cooking wastewater-overall kinetic analysis[J]. Water Research, 2003, 37(13): 3061-3069.
[12] Kavitha V, Palanivelu K. Destruction of cresols by Fenton oxidation process[J]. Water Research, 2005, 39(13):3062-3072.
[13] Feng Y J(冯玉杰), Li X Y(李小岩), You H(尤宏), et al.(Editors). 电化学技术在环境工程中的应用[M]. Beijing:Chemical Industry Press(化学工业出版社), 2002:94-96.
[14] Rana P, Mohan N, Rajagopal C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes[J]. Water Research, 2004, 38(12): 2811-2820.
[15] Sanromán M A, Pazos M, Ricart M T, et al. Electrochemical decolourisation of structurally different dyes[J]. Chemsphere,2004, 57(3): 233-239.
[16] Ma H, Zhang X, Ma Q, et al. Electrochemical catalytic treatment of phenol wastewater[J]. Journal of Hazardous Materials, 2009, 165(1): 475-480.
[17] Hong W, Guan Q, Li J, et al. Phenolic wastewater treatment by an electrocatalytic membrane reactor[J]. Catalysis Today, 2014, 236(18): 121-126.
[18] Yang Y, Hong W, Li J, et al. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment [J]. Environmental Science & Technology,2012, 46(12): 6815-6821.
[19] Wang H, Wang H, Li J X, et al. An electrocatalytic reactor for the high selectivity production of sodium
2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1-propanol[J]. Eletrochimica Acta, 2014, 123(10): 33-41.
[20] Fang X, Yin Z, Wang H, et al. Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor[J]. Journal of Catalysis, 2015, 329: 187-194.
[21] Bin D, Wang H, Li J, et al. Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor[J]. Electrochimica Acta, 2014, 130(4):170-178.
[22] Li Z Y, Akhtar M S, Bui P T M, et al. Predominance of two dimensional (2D) Mn2O3 nanowalls thin film for high performance electrochemical supercapacitors [J]. Chemical Engineering Journal, 2017, 330: 1240-1247.
[23] Chen Y(陈野), Zhao WL(赵文丽), Wen Q(温青). Anode electrodeposition of Ti/MnO2 electrodeand electrocatalytic oxidization properties of phenol degradation[J]. Journal of Electrochemistry(电化学), 2011, 17(2): 199-203.
[24] Jin J, Huang S, Jing L, et al. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high-rate and high-capacity lithium batteries[J]. Advanced Science, 2015, 2(7): 1500070-1500070.
[25] Alejandra R, Philipp H. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water[J]. Physical Chemistry C, 2014, 118(26):14073-14081.
[26] Huang Y, Yan H, Tong Y. Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode[J]. Journal of Electroanalytical Chemistry, 2015, 743: 25-30.
[27] Li D(李荻). 电化学原理(Third Ed.)[M]. Beijing: Beihang University Press(北京航空航天大学出版社), 2008: 223-224.
[28] Padayachee D, Golovko V, Marshall A T. The effect of MnO2 loading on the glycerol electrooxidation activity of Au/MnO2/C catalysts[J]. Electrochimica Acta, 2013, 98(16): 208-217.
[29] Kang J L, Hirata A, Kang L, et al. Enhanced supercapacitor performance of MnO2 by atomic doping[J]. Angewandte Chemie-International Edition, 2013, 52(6): 1664-1667.
[30] Xu C, Kang F, Li B. Recent progress on manganese dioxide based supercapacitors[J]. Journal of Materials Research,2010, 25(8): 1421-1426.
[31] Frontana-Uribe B A, Little R D, Ibanez J G, et al. Cheminform abstract: Organic electrosynthesis: A promising green methodology in organic chemistry[J]. Green Chemistry,2015, 42(12): 2099-2119.
[32] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J].Water Research, 2003, 37(10): 2399-2407.
[33] Liu J G, Cui Z F. Optimization of operating conditions for glucose oxidation in an enzymatic membrane bioreactor[J]. Journal of Membrane Science, 2007, 320(1): 180-187.
|