SSE
镁(Mg)在地壳中的储量丰富且理论体积容量高,这使得其在储能领域备受关注,特别是在固态电池中,它极具发展潜力,可作为锂(Li)的替代品。然而,镁离子在固态电解质(SSE)中传导缓慢,这是阻碍镁离子固态电池发展的关键挑战之一。近年来,各种传导镁离子的SSE被广泛报道,但很难从单一的文献报告中得出关键的信息。此外,进一步阐明镁离子SSE的结构与性能关系是有必要的,这将为SSE提供更精确的设计指南。在这篇文章中,我们基于数据挖掘分析了过去四十年报道的具有高离子电导率的镁基SSE的结构特征,总结了三个优化镁离子固态电解质的策略。基于实验和理论计算技术的发展,讨论了现阶段开发镁固态电解质的机遇和挑战,论述了实验、理论计算和机器学习在开发新型高性能镁离子SSE过程中的协作过程。我们为优化和开发下一代镁离子固态电解质提供了大数据见解。
使用陶瓷电解质的全固态锂离子电池(LIBs)被认为是理想的可充电电池形式,因为它们具有高能量密度和安全性。然而,在追求全固态LIBs的过程中,锂资源层面的问题往往被选择性的忽视了。最具实用化潜力的富锂陶瓷电解质会使得全固态LIBs的锂消耗量是常规LIBs的数倍至数十倍。考虑到以当前的锂资源条件很难支撑全固态锂离子电池的可持续发展,另一种同样能够提供高能量密度和安全性双重优势的系统——全固态钠离子电池(SIBs),相比于锂离子电池具有更显著的可持续性优势,并有可能成为下一代高能量密度电池发展竞赛中的有力竞争者。然而,目前关于全固态钠离子电池的研究依然处于十分初步的阶段,本文简要介绍了全固态SIBs的研究现状,并通过对聚合物类材料,钠超离子导体(NASICON)类材料等固态钠离子导体的总结讨论,解释了全固态SIBs的可行性与潜在优势的来源。此外,本文还简要讨论了通过人工智能辅助开发固态钠离子导体的可行性,旨在激发研究人员的兴趣并吸引更多人关注到全固态SIBs这一领域中。
固态锂电池因其优异的安全性能而成为大规模储能领域的研究热点。与锂金属阳极匹配的高压正极材料的发展使固态锂电池的能量密度接近甚至超过了基于液体电解液的锂电池。然而,在高电压条件下(> 4.3 V),固态电解质组分分解、结构退化和界面副反应会显著降低高压固态电池性能,阻碍其进一步发展。本文综述了高压固态锂电池中无机电解质、聚合物电解质和复合电解质的最新研究进展。同时,详细介绍了高压凝胶固体电解质和高压准固体电解质的设计。此外,界面工程对于提高高压固态电池的整体性能至关重要。最后,我们总结了高压固态锂电池面临的挑战,并对未来的研究方向提出了自己的看法,以期对未来的研究具有指导意义,推动高压固态锂电池的发展。
随着锂离子电池(LIBs)在便携式电子产品、电动汽车和电网储能领域的广泛应用,因可燃液态有机电解质所引起的电池安全问题受到越来越多的关注。固态锂电池(SSLBs)凭借其高安全性和高的能量密度潜力,被视为下一代储能技术的重要方向。然而,固态电解质(SSEs)的实际应用仍面临诸多挑战,包括离子电导率低、与电极界面相容性差、机械性能不理想,以及规模化制备困难等。如何获得满足应用需求的高性能锂离子固态电解质呢?为回答这一科学问题,本文系统梳理了近年来SSEs的研究进展,涵盖无机类(氧化物、硫化物、卤化物)、有机类(聚合物、塑性晶体、聚离子液体)以及新兴的软固态电解质(S3Es)类。分析表明,单组分(无机、有机)固态电解质存在固有局限性,且仅通过成分和结构调整难以完全克服。相比之下,软固态电解质,特别是基于“刚-柔协同”复合策略和借助多孔框架实现“Li+去溶剂化”机制的S3Es体系,能够通过整合互补组分的优势,在电化学性能(如离子电导率与电化学稳定窗口)、力学性能及可加工性方面实现协同提升,展现出作为下一代SSEs的巨大潜力。此外,本文还进一步探讨了S3Es面向实际应用所面临的关键挑战及新兴研究趋势,旨在为高性能SSEs的未来发展提供战略性见解。
锂金属负极的理论容量高达3860 mAh·g-1,被视为开发下一代高能量密度电池的核心基础。然而,其实际应用受到多项关键挑战的阻碍,包括枝晶形成、不稳定的固体电解质界面(SEI)、与电解质的副反应,以及由此引发的安全风险。本综述系统探讨了液态和固态电池体系中锂的成核、生长与脱嵌机制,深入分析了理解枝晶生长成因至关重要的关键理论概念,如异相成核热力学、表面扩散动力学、空间电荷效应及 SEI 诱导成核。此外,综述还讨论了导致 SEI 降解和死锂形成的电化学-力学耦合失效问题。针对液态电池体系,综述提出了抑制枝晶形成与SEI不稳定性的策略,包括电解质优化、人工SEI设计及电极骨架设计。在固态电池方面,综述对聚合物、硫化物和卤化物电解质相关的界面挑战进行了细致分析,并针对不同类型的固态电解质总结了相应的解决方案。同时,综述强调了先进表征技术与计算模拟在理解和调控锂金属-电解质界面过程中的重要性。展望未来,综述指出了未来的研究方向:需重视跨学科方法的整合,以应对这些相互关联的挑战。通过解决这些问题,锂金属电池的快速商业化与广泛应用之路将更加清晰,使我们更接近实现稳定、高能量密度的电池,从而满足各行业现代储能应用日益增长的需求。