欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 电化学获奖人专辑 •    

高压固态锂电池:电解质设计、界面工程和未来前景综述

杨诚a,梁子欣a,张茗赟a,陈明哲a,*,张凯b,*,周丽敏a,*   

  1. a南京理工大学能源与动力工程学院,中国江苏省南京市210094。 b特种化学电源全国重点实验室、先进能源材料化学教育部重点实验室、天津化学化工协同创新中心、南开大学化学学院、物质绿色创造与制造海河实验室,中国天津300071。
  • 发布日期:2025-06-16
  • 通讯作者: 陈明哲,张凯,周丽敏 E-mail:chenmingzhe@njust.edu.cn; lmzhou@njust.edu.cn;zhangkai_nk@nankai.edu.cn
  • 作者简介:杨诚,梁子欣,张茗赟,陈明哲,张凯,周丽敏

High-Voltage Solid-State Lithium Batteries: A Review of Electrolyte Design, Interface Engineering, and Future Perspectives

Cheng Yanga, Zixin Lianga, Mingyun Zhanga, Mingzhe Chena,*, Kai Zhangb,*, Limin Zhoua,*   

  1. a School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. b State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
  • Online:2025-06-16
  • Contact: Mingzhe Chen, Kai Zhang, Limin Zhou E-mail:chenmingzhe@njust.edu.cn; lmzhou@njust.edu.cn;zhangkai_nk@nankai.edu.cn
  • About author:Cheng Yang, Zixin Liang, Mingyun Zhang, Mingzhe Chen, Kai Zhang, Limin Zhou

摘要: 固态锂电池因其优异的安全性能而成为大规模储能领域的研究热点。与锂金属阳极匹配的高压正极材料的发展使固态锂电池的能量密度接近甚至超过了基于液体电解液的锂电池。然而,在高电压条件下(>4.3V),固态电解质组分分解、结构退化和界面副反应会显著降低高压固态电池性能,阻碍其进一步发展。本文综述了高压固态锂电池中无机电解质、聚合物电解质和复合电解质的最新研究进展。同时,详细介绍了高压凝胶固体电解质和高压准固体电解质的设计。此外,界面工程对于提高高压固态电池的整体性能至关重要。最后,我们总结了高压固态锂电池面临的挑战,并对未来的研究方向提出了自己的看法,以期对未来的研究具有指导意义,推动高压固态锂电池的发展。

关键词: 固态锂电池, 高电压, 固态电解质, 界面工程

Abstract: Solid-state lithium batteries have become a research hotspot in the field of large-scale energy storage due to their excellent safety performance. The development of high-voltage positive electrode materials matched with lithium metal anode have advanced the energy density of solid-state lithium batteries close to or even exceed that of lithium batteries based on liquid electrolyte, which is expected to be commercialized in the future. However, in high voltage conditions (>4.3 V), the decomposition of electrolyte components, structural degradation, and interface side reactions significantly reduce battery performance and hinder its further development. This review summarizes the latest research progress of inorganic electrolytes, polymer electrolytes, and composite electrolytes in high-voltage solid-state lithium batteries. At the same time, the design of high-voltage polymer gel electrolyte and high-voltage quasi solid-state electrolyte are introduced in detail. In addition, interface engineering is crucial for improving the overall performance of high-voltage solid-state batteries. Finally, we summarized the challenges faced by high-voltage solid-state lithium batteries and put forward our own views on future research directions. This review offers instructive insights for the advancement of high-voltage solid-state lithium batteries for large-scale energy storage applications.

Key words: Solid-state lithium batteries, High-voltage, Solid-state electrolytes, Interface engineering