[1] |
Blomgren G E. The development and future of lithium ion batteries[J]. J. Electrochem. Soc., 2016, 164(1): A5019-A5025.
|
[2] |
Chen Y Q, Kang Y Q, Zhao Y, Wang L, Liu J L, Li Y X, Liang Z, He X M, Li X, Tavajohi N, Li B H. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. J. Energy Chem., 2021, 59: 83-99.
doi: 10.1016/j.jechem.2020.10.017
|
[3] |
Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chem. Soc. Rev., 2011, 40(5): 2525-2540.
doi: 10.1039/c0cs00081g
pmid: 21253642
|
[4] |
Saccoccio M, Yu J, Lu Z, Kwok S C T, Wang J, Yeung K K, Yuen M M F, Ciucci F. Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes[J]. J. Power Sources, 2017, 365: 43-52.
|
[5] |
Narayanan S, Ulissi U, Gibson J S, Chart Y A, Weatherup R S, Pasta M. Effect of current density on the solid electrolyte interphase formation at the lithium|Li6PS5Cl interface[J]. Nat. Commun., 2022, 13: 7237.
|
[6] |
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686.
doi: 10.1038/nmat3066
pmid: 21804556
|
[7] |
Miao X, Guan S D, Ma C, Li L L, Nan C W. Role of interfaces in solid-state batteries[J]. Adv. Mater., 2023, 35(50): 2206402.
|
[8] |
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework[J]. Energy Environ. Sci., 2019, 12(3): 938-944.
|
[9] |
Kubota K, Komaba S. Review—practical issues and future perspective for Na-ion batteries[J]. J. Electrochem. Soc., 2015, 162(14): A2538-A2550.
|
[10] |
Nayak P K, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew. Chem. Int. Ed., 2018, 57(1): 102-120.
doi: 10.1002/anie.201703772
pmid: 28627780
|
[11] |
Oshima T, Kajita M, Okuno A. Development of sodium‐sulfur batteries[J]. Int. J. Appl. Ceram. Technol., 2005, 1(3): 269-276.
|
[12] |
Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries[J]. Nat. Rev. Mater., 2018, 3: 18013.
|
[13] |
Tang W S, Yoshida K, Soloninin A V, Skoryunov R V, Babanova O A, Skripov A V, Dimitrievska M, Stavila V, Orimo S I, Udovic T J. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts[J]. ACS Energy Lett., 2016, 1(4): 659-664.
|
[14] |
Serra Moreno J, Armand M, Berman M B, Greenbaum S G, Scrosati B, Panero S. Composite PEOn: NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization[J]. J. Power Sources, 2014, 248: 695-702.
|
[15] |
Goodenough J B, Hong H Y P, Kafalas J A. FAST Na+ - ion transport in skeleton structures[J]. Mater. Res. Bull., 1976, 11: 203-220.
|
[16] |
Ruan Y L, Song S D, Liu J J, Liu P, Cheng B W, Song X Y, Battaglia V. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J]. Ceram. Int., 2017, 43(10): 7810-7815.
|
[17] |
Zhang Z Z, Shi S Q, Hu Y S, Chen L Q. Sol-gel synthesis and conductivity properties of sodium ion solid state electrolytes Na3Zr2Si2PO12[J]. J. Inorg. Mater., 2013, 28(11): 1255-1260.
|
[18] |
Shen L, Yang J, Liu G, Avdeev M, Yao X. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J]. Mater. Today Energy, 2021, 20: 100691.
|
[19] |
Ma Q L, Guin M, Naqash S, Tsai C L, Tietz F, Guillon O. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chem. Mat., 2016, 28(13): 4821-4828.
|
[20] |
Yang J, Liu G Z, Avdeev M, Wan H L, Han F D, Shen L, Zou Z Y, Shi S Q, Hu Y S, Wang C S, Yao X Y. Ultrastable all-solid-state sodium rechargeable batteries[J], ACS Energy Lett., 2020, 5(9): 2835-2841.
|
[21] |
Landesfeind J, Hosaka T, Graf M, Kubota K, Komaba S, Gasteiger H A. Comparison of ionic transport properties of non-aqueous lithium and sodium hexafluorophosphate electrolytes[J]. J. Electrochem. Soc., 2021, 168: 040538
|
[22] |
Chi X W, Zhang Y, Hao F, Kmiec S, Dong H, Xu R, Zhao K J, Ai Q, Terlier T, Wang L, Zhao L H, Guo L Q, Lou J, Xin H L, Martin S W, Yao Y. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries[J]. Nat. Commun., 2022, 13(1): 2854.
|
[23] |
Shao Y J, Zhong G M, Lu Y X, Liu L L, Zhao C L, Zhang Q Q, Hu Y S, Yang Y, Chen L Q. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Mater., 2019, 23: 514-521.
|
[24] |
Fan S S, Lei M, Wu H, Hu J L, Yin C L, Liang T X, Li C L. A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries[J]. Energy Storage Mater., 2020, 31: 87-94.
|
[25] |
Hargreaves C J, Gaultois M W, Daniels L M, Watts E J, Kurlin V A, Moran M, Dang Y, Morris R, Morscher A, Thompson K, Wright M A, Prasa B E, Blanc F, Collins C M, Crawford C A, Duff B B, Evans J, Gamon J, Han G, Leube B T, Niu H, Perez A J, Robinson A, Rogan O, Sharp P M, Shoko E, Sonni M, Thomas W J, Vasylenko A, Wang L, Rosseinsky M J, Dyer M S. A database of experimentally measured lithium solid electrolyte conductivities evaluated with machine learning[J]. npj Comput. Mater., 2023, 9(1): 9.
|
[26] |
Jo J, Choi E, Kim M, Min K. Machine learning-aided materials design platform for predicting the mechanical properties of Na-ion solid-state electrolytes[J]. ACS Appl. Energ. Mater., 2021, 4(8): 7862-7869.
|
[27] |
Zhang Y, He X F, Chen Z Q, Bai Q, Nolan A M, Roberts C A, Banerjee D, Matsunaga T, Mo Y F, Ling C. Unsupervised discovery of solid-state lithium ion conductors[J]. Nat. Commun., 2019, 10(1): 5260.
|