[1] |
Van Deelen T W, Hernández Mejía C, de Jong K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat. Catal., 2019, 2(11): 955-970.
doi: 10.1038/s41929-019-0364-x
|
[2] |
Li Y Y, Zhang Y S, Qian K, Huang W X. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts[J]. ACS Catal., 2022, 12(2): 1268-1287.
|
[3] |
Tang H L, Wei J K, Liu F, Qiao B T, Pan X L, Li L, Liu J Y, Wang J H, Zhang T. Strong metal-support interactions between gold nanoparticles and nonoxides[J]. J. Am. Chem. Soc., 2015, 138(1): 56-59.
|
[4] |
Luo Z X, Zhao G Q, Pan H G, Sun W P. Strong metal-support interaction in heterogeneous catalysts[J]. Adv. Energy Mater., 2022, 12(37): 2201395.
|
[5] |
Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO2[J]. J. Am. Chem. Soc., 1978, 100(1): 170-175.
|
[6] |
Beck A, Huang X, Artiglia L, Zabilskiy M, Wang X, Rzepka P, Palagin D, Willinger M G, van Bokhoven J A. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction[J]. Nat. Commun., 2020, 11(1): 3220.
|
[7] |
Zhang S, Plessow P N, Willis J J, Dai S, Xu M, Graham G W, Cargnello M, Abild-Pedersen F, Pan X. Dynamical observation and detailed description of catalysts under strong metal-support interaction[J]. Nano Lett., 2016, 16(7): 4528-4534.
doi: 10.1021/acs.nanolett.6b01769
pmid: 27280326
|
[8] |
Ro I, Resasco J, Christopher P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catal., 2018, 8(8): 7368-7387.
|
[9] |
Zhang Y R, Yan W J, Qi H F, Su X, Su Y, Liu X Y, Li L, Yang X F, Huang Y Q, Zhang T. Strong metal-support interaction of Ru on TiO2 derived from the Co-reduction mechanism of RuxTi1-xO2 interphase[J]. ACS Catal., 2022, 12(3): 1697-1705.
|
[10] |
Wang L X, Wang L, Meng X J, Xiao F S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Adv. Mater., 2019, 31(50): 1901905.
|
[11] |
Pu T C, Zhang W H, Zhu M H. Engineering heterogeneous catalysis with strong metal-support interactions: Characterization, theory and manipulation[J]. Angew. Chem. Int. Ed., 2022, 62(4): e202212278.
|
[12] |
Feng R X, Li D, Yang H Z, Li C Y, Zhao Y X, Waterhouse G I N, Shang L, Zhang T R. Epitaxial ultrathin Pt atomic layers on CrN nanoparticle catalysts[J]. Adv. Mater., 2023, 36(9): 2309251.
|
[13] |
Yang Z J, Chen C Q, Zhao Y X, Wang Q, Zhao J Q, Waterhouse G I N, Qin Y, Shang L, Zhang T R. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J]. Adv. Mater., 2023, 35(1): 2208799.
|
[14] |
Zhang Y S, Liu J X, Qian K, Jia A P, Li D, Shi L, Hu J, Zhu J F, Huang W X. Structure sensitivity of Au-TiO2 strong metal-support interactions[J]. Angew. Chem. Int. Ed., 2021, 60(21): 12074-12081.
|
[15] |
Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren YG, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide[J]. Sci. Adv., 2017, 3(10): e1700231.
|
[16] |
Zhang X X, Shi W, Li Y, Zhao W N, Han S B, Shen W J. Pt3Ti intermetallic alloy formed by strong metal-support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone[J]. ACS Catal., 2023, 13(7): 4030-4041.
|
[17] |
Wang X, Beck A, van Bokhoven J A, Palagin D. Thermodynamic insights into strong metal-support interaction of transition metal nanoparticles on titania: Simple descriptors for complex chemistry[J]. J. Mater. Chem. A, 2021, 9(7): 4044-4054.
|
[18] |
Liu S F, Qi H F, Zhou J H, Xu W, Niu Y M, Zhang B S, Zhao Y, Liu W, Ao Z M, Kuang Z C, Li L, Wang M, Wang J H. Encapsulation of platinum by titania under an oxidative atmosphere: Contrary to classical strong metal-support interactions[J]. ACS Catal., 2021: 6081-6090.
|
[19] |
Chen H, Yang Z Z, Wang X, Polo-Garzon F, Halstenberg P W, Wang T, Suo X, Yang S Z, Meyer H M, Wu Z L, Dai S. Photoinduced strong metal-support interaction for enhanced catalysis[J]. J. Am. Chem. Soc., 2021, 143(23): 8521-8526.
doi: 10.1021/jacs.0c12817
pmid: 34081447
|
[20] |
Siniard K M, Li M, Yang S Z, Zhang J, Polo-Garzon F, Wu Z, Yang Z, Dai S. Ultrasonication-induced strong metal-support interaction construction in water towards enhanced catalysis[J]. Angew. Chem. Int. Ed., 2023, 135(20): e202214322.
|
[21] |
Hornberger E, Bergmann A, Schmies H, Kühl S, Wang G, Drnec J, Sandbeck D J S, Ramani V, Cherevko S, Mayrhofer K J J, Strasser P. In situ stability studies of platinum nanoparticles supported on ruthenium-titanium mixed oxide (RTO) for fuel cell cathodes[J]. ACS Catal., 2018, 8(10): 9675-9683.
|
[22] |
Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 3.
|
[23] |
Chen H J, Tang M H, Chen S L. Hydrophobicity optimization of cathode catalyst layer for proton exchange membrane fuel cell[J]. J. Electrochem., 2023, 29(9): 2.
|
[24] |
Liu X, Wang Y H, Liang J S, Li S Z, Zhang S Y, Su D, Cai Z, Huang Y H, Elbaz L, Li Q. Introducing electron buffers into intermetallic Pt alloys against surface polarization for high-performing fuel cells[J]. J. Am. Chem. Soc., 2024, 146(3): 2033-2042.
doi: 10.1021/jacs.3c10681
pmid: 38206169
|
[25] |
Liu X, Zhao Z L, Liang J S, Li S Z, Lu G, Priest C, Wang T Y, Han J T, Wu G, Wang X M, Huang Y H, Li Q. Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells[J]. Angew. Chem. Int. Ed., 2023, 62(23): e202302134.
|
[26] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169.
|
[27] |
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953.
|
[28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865.
|
[29] |
Monkhorst H J, Pack J D. Special points for brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188-5192.
|
[30] |
Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. J. Phys. Chem. A, 2011, 115(21): 5461-5466.
doi: 10.1021/jp202489s
pmid: 21548594
|
[31] |
Patterson A L. The scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982.
|
[32] |
Geppert T N, Bosund M, Putkonen M, Stuhmeier B M, Pasanen A T, Heikkila P, Gasteiger H A, El-Sayed H A. HOR activity of Pt-TiO2-y at unconventionally high potentials explained: The influence of SMSI on the electrochemical behavior of Pt[J]. J. Electrochem. Soc., 2020, 167(8): 084517.
|
[33] |
Wang Y, Li Z H, Zheng X Q, Wu R, Song J F, Chen Y L, Cao X Z, Wang Y, Nie Y. Renovating phase constitution and construction of pt nanocubes for electrocatalysis of methanol oxidation via a solvothermal-induced strong metal-support interaction[J]. Appl. Catal. B-Environ., 2023, 325: 122383.
|
[34] |
Jang J, Sharma M, Choi D, Kang Y S, Kim Y, Min J, Sung H, Jung N, Yoo S J. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core-shell catalyst[J]. ACS Appl. Mater. Interfaces, 2019, 11(31): 27735-27742.
|
[35] |
Fu Q, Colmenares Rausseo L C, Martinez U, Dahl P I, Garcia Lastra J M, Vullum P E, Svenum I H, Vegge T. Effect of sb segregation on conductance and catalytic activity at Pt/Sb-doped SnO2 interface: A synergetic computational and experimental study[J]. ACS Appl. Mater. Interfaces, 2015, 7(50): 27782-27795.
|
[36] |
Wang Q, Gu Y D, Zhu W X, Han L, Pan F, Song C. Noble-metal-assisted fast interfacial oxygen migration with topotactic phase transition in perovskite oxides[J]. Adv. Funct. Mater., 2021, 31(40): 2106765.
|
[37] |
Li S Z, Liu J Y, Liang J S, Lin Z J, Liu X, Chen Y, Lu G, Wang C L, Wei P, Han J T, Huang Y H, Wu G, Li Q. Tuning oxygen vacancy in SnO2 inhibits Pt migration and agglomeration towards high-performing fuel cells[J]. Appl. Catal. B-Environ., 2023, 320: 122017.
|
[38] |
Lin Z J, Liu J Y, Li S Z, Liang J S, Liu X, Xie L F, Lu G, Han J T, Huang Y H, Li Q. Anti-corrosive SnS2/SnO2 heterostructured support for Pt nanoparticles enables remarkable oxygen reduction catalysis via interfacial enhancement[J]. Adv. Funct. Mater., 2023, 33(11): 2211638.
|
[39] |
Samanta R, Mishra R, Barman S. Interface-engineered porous Pt-PdO nanostructures for highly efficient hydrogen evolution and oxidation reactions in base and acid[J]. ACS Sustainable Chem. Eng., 2022, 10(11): 3704-3715.
|
[40] |
Zhou Y J, Yu F Y, Lang Z L, Nie H D, Wang Z Z, Shao M W, Liu Y, Tan H Q, Li Y G, Kang Z H. Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs[J]. Chem. Eng. J., 2021, 426: 130709.
|
[41] |
Jin C Q, Wu F L, Tang H B, Pan H F, Chen Z D, Wang R, Meng Z H, Li J S, Tang H L. Confined tuning of the charge distribution of Pt electrocatalyst for reinforcing anti-poisoning ability: Toward efficient separation of hydrogen from gases containing ammonia[J]. Chem. Eng. J., 2023, 475: 146139.
|
[42] |
Chen G Z, Chen W, Lu R H, Ma C, Zhang Z D, Huang Z Y, Weng J N, Wang Z Y, Han Y H, Huang W. Near-atomic-scale superfine alloy clusters for ultrastable acidic hydrogen electrocatalysis[J]. J. Am. Chem. Soc., 2023, 145(40): 22069-22078.
|
[43] |
Li X, Han X, Yang Z R, Wang S, Yang Y, Wang J, Chen J D, Chen Z W, Jin H L. Lattice-distorted Pt wrinkled nanoparticles for highly effective hydrogen electrocatalysis[J]. Nano Res., 2024: 1-8.
|
[44] |
Huang Z Y, Lu R H, Zhang Y Z, Chen W, Chen G Z, Ma C, Wang Z Y, Han Y H, Huang W. A highly efficient pH-universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms[J]. Adv. Funct. Mater., 2023, 33(47): 230633.
|
[45] |
Zhou Y Y, Xie Z Y, Jiang J X, Wang J, Song X Y, He Q, Ding W, Wei Z D. Lattice-confined ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat. Catal., 2021, 4(4): 341-341.
|