[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.[2] Tollefson J. Charging up the future[J]. Nature, 2008, 456(7221): 436-440.[3] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.[4] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.[5] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.[6] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.[7] Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.[8] Aurbach D, Markovsky B, Levi M, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999, 81: 95-111.[9] Kim S P, Duin A C T, Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597.[10] He Y, Yu X Q, Li G, et al. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrode caused by lithium insertion and extraction[J]. Journal of Power Sources, 2012, 216: 131-138.[11] Wang J W, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2): 709-715.[12] Li H, Huang X, Chen L, et al. A high capacity nano Si composite anode material for lithium rechargeable batteries[J]. Electrochemical and solid-state letters, 1999, 2(11): 547-549.[13] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-5.[14] Fu Y P(傅焰鹏), Chen H X(陈慧鑫), Yang Y(杨勇). Silicon nanowires as anode materials for lithium ion Batteries[J]. Journal of Electrochemistry (电化学), 2009, 15(1): 56-61.[15] Takamura T, Ohara S, Uehara M, et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life[J]. Journal of Power Sources, 2004, 129(1): 96-100.[16] Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439.[17] Alliata D, R K?tz, P Novák, et al. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes[J]. Electrochemistry Communications, 2000, 2(6): 436-440.[18] Jeong S-K, Inaba M, Iriyama Y, et al. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries[J]. Journal of Power Sources, 2003, 119-121: 555-560.[19] Lucas I T, Pollak E, Kostecki R. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochemistry Communications, 2009, 11(11): 2157-2160.[20] Zhang J, Wang R, Yang X, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012, 12(4): 2153-2157.[21] Wang Y, He Y, Xiao R, et al. Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries[J]. Journal of Power Sources, 2012, 202: 236-245.[22] Andersson A M, Abraham D P, Haasch R, et al. Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149(10): A1358-A1369. |