电化学(中英文) ›› 2021, Vol. 27 ›› Issue (3): 269-277. doi: 10.13208/j.electrochem.201244
收稿日期:
2021-02-01
修回日期:
2021-04-19
出版日期:
2021-06-28
发布日期:
2021-04-22
通讯作者:
潘锋
E-mail:panfeng@pkusz.edu.cn
基金资助:
Bing-Kai Zhang1,2, Lu-Yi Yang1, Shun-Ning Li1, Feng Pan1,*()
Received:
2021-02-01
Revised:
2021-04-19
Published:
2021-06-28
Online:
2021-04-22
Contact:
Feng Pan
E-mail:panfeng@pkusz.edu.cn
摘要:
固态电解质在室温下表现出非凡的离子导电性,使其有潜力应用于全固态锂离子电池。开发新的高性能固态电解质需要对锂离子传输机理及其规律进行深入研究。本文论述了近期研究中锂离子传输机理方面的研究进展,包括离子传输理论基础的概述;总结Li10GeP2S12、Li7La3Zr2O12和Li1+xAlxTi2-x(PO4)3固态电解质材料中晶体结构、离子传输和研究进展;阐述锂离子传输中结构特征、传输机理(单离子跳跃传输和多离子协同传输)以及构效关系;总结(反)Meyer-Neldel规则的关键问题和相关电解质材料。最后,展望了给出电解质材料的设计策略和未来机理研究的重点,为无机固态电解质材料的探索提供新的思路和方向。
张丙凯, 杨卢奕, 李舜宁, 潘锋. 固态电解质中锂离子传输机理研究进展[J]. 电化学(中英文), 2021, 27(3): 269-277.
Bing-Kai Zhang, Lu-Yi Yang, Shun-Ning Li, Feng Pan. Progress of Lithium-Ion Transport Mechanism in Solid-State Electrolytes[J]. Journal of Electrochemistry, 2021, 27(3): 269-277.
表1
三类固态电解质材料的离子电导率和晶格参数。
Solid-state electrolyte | Room-temperature conductivity/(S·cm-1) | Lattice parameters/Å | Space group | Ref. | ||
---|---|---|---|---|---|---|
a | b | c | ||||
Li10GeP2S12 | 1.20 × 10 -2 | 8.69 | 8.69 | 12.60 | P42/nmc | [ |
Li1.3Al0.3Ti1.7(PO4)3 | 3.00 × 10 -3 | 8.50 | 8.50 | 20.82 | R-3c | [ |
Li7La3Zr2O12 | 3.10 × 10 -4 | 12.97 | 12.97 | 12.97 | Ia-3d | [ |
表2
晶格中离子的扩散机制。
Mechanism | Description | Feature |
---|---|---|
Vacancy mechanism | ||
Vacancy | Self-diffusion in single element crystals, metals or alloys | Li-ions’ migration gain energy to break chemical bonds with neighboring atoms. The jump of Li-ions will cause that the energy breaking chemical bonds comes from the heat of atomic vibration (Eav - kBT). |
Divacancy | Diffusion through the accumulation of vacancies | |
Non-Vacancy | ||
Interstitial | Interstitial ions are much smaller than the host lattice ones (such as C, H, O), and the ions are incorporated into the interstitial positions of the host lattice to form interstitial solid solutions. | Interstitial diffusion is usually faster than vacancy diffusion because of the weaker bonds between the interstitial ions and surrounding ones. |
Collective migration | The following three types of mechanisms have the characteristic of cooperative transmission, that is, multiple ions transport is collective. | |
Interstitialcy | A collective mechanism important for radiation-induced diffusion. At least two atoms move simultaneously; however, this mechanism is negligible for thermal diffusion | |
Interstitial-substitutional exchange | Solute atoms are dissolved on both interstitial and substitutional sitesand diffuse via interstitial or substitutional exchange mechanisms |
[1] | Zhang B K, Tan R, Yang L Y, Zheng J X, Zhang K C, Mo S J, Lin Z, Pan F. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Mater., 2018, 10: 139-159. |
[2] |
Zhao Q, Stalin S, Zhao C Z, Archer L A. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat. Rev. Mater., 2020, 5(3): 229-252.
doi: 10.1038/s41578-019-0165-5 URL |
[3] | Zheng Z, Weng M Y, Yang L Y, Hu Z X, Chen Z F, Pan F. Thermodynamically revealing the essence of order and disorder structures in layered cathode materials[J]. Chin. J. Struct. Chem., 2019, 38(12): 2020-2026. |
[4] |
Yang L Y, Yang K, Zheng J X, Xu K, Amine K, Pan F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries[J]. Chem. Soc. Rev., 2020, 49(14): 4667-4680.
doi: 10.1039/D0CS00137F URL |
[5] | Lu Y, Chen X, Zhao C Z, Zhang Q. Machine learning towards screening solid-state lithium ion conductors[J]. Chin. J. Struct. Chem., 2020, 39(1): 8-10. |
[6] |
Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chem. Rev., 2016, 116(1): 140-162.
doi: 10.1021/acs.chemrev.5b00563 URL |
[7] | Strock L W. The crystal structure of high temperature iodine silver alpha-AgI[J]. Physik. Chem. B, 1934, 25: 441-459. |
[8] |
Liu Z C, Fu W J, Payzant E A, Yu X, Wu Z L, Dudney N J, Kiggans J, Hong K L, Rondinone A J, Liang C D. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J. Am. Chem. Soc., 2013, 135(3): 975-978.
doi: 10.1021/ja3110895 URL |
[9] |
Zhang B K, Yang L Y, Wang L W, Pan F. Cooperative transport enabling fast Li-ion diffusion in thio-LISICON Li10SiP2S12 solid electrolyte[J]. Nano Energy, 2019, 62: 844-852.
doi: 10.1016/j.nanoen.2019.05.085 URL |
[10] |
Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zai T, Schlosser M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew. Chem. Int. Ed., 2008, 47(4): 755-758.
doi: 10.1002/(ISSN)1521-3773 URL |
[11] |
Liu Q, Geng Z, Han C P, Fu Y Z, Li S, He Y B, Kang F Y, Li B H. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. J. Power Sources, 2018, 389: 120-134.
doi: 10.1016/j.jpowsour.2018.04.019 URL |
[12] |
Zhang B K, Lin Z, Dong H F, Wang L W, Pan F. Revealing cooperative Li-ion migration in Li1+xAlxTi2-x (PO4)3 solid state electrolytes with high Al doping[J]. J. Mater. Chem. A, 2020, 8(1): 342-348.
doi: 10.1039/C9TA09770H URL |
[13] |
Chen Y, Rangasamy E, Liang C D, An K. Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets[J]. Chem. Mat., 2015, 27(16): 5491-5494.
doi: 10.1021/acs.chemmater.5b02521 URL |
[14] |
Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: A review[J]. Chem. Mat., 2003, 15(21): 3974-3990.
doi: 10.1021/cm0300516 URL |
[15] |
He X F, Zhu Y Z, Mo Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat. Commun., 2017, 8: 15893.
doi: 10.1038/ncomms15893 URL |
[16] |
Muy S, Bachman J C, Giordano L, Chang H H, Abernathy D L, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y. Tuning mobility and stability of lithium ion conductors based on lattice dynamics[J]. Energy Environ. Sci., 2018, 11(4): 850-859.
doi: 10.1039/C7EE03364H URL |
[17] |
Zhang B K, Zhong J J, Zhang Y P, Yang L Y, Yang J L, Li S, Wang L W, Pan F, Lin Z. Discovering a new class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice[J]. Nano Energy, 2021, 79: 105407.
doi: 10.1016/j.nanoen.2020.105407 URL |
[18] |
Zhang B K, Weng M Y, Lin Z, Feng Y C, Yang L Y, Wang L W, Pan F. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16-6xOx solid-state-electrolyte enables extraordinary conductivity and high stability[J]. Small, 2020, 16(11): 1906374.
doi: 10.1002/smll.v16.11 URL |
[19] |
Zhang B K, Lin Z, Wang L W, Pan F. Achieving both high ionic conductivity and high interfacial stability with the Li2+xC1-x BxO3 solid-state electrolyte: design from theoretical calculations[J]. ACS Appl. Mater. Inter., 2020, 12(5): 6007-6014.
doi: 10.1021/acsami.9b22185 URL |
[20] |
Park M, Zhang X, Chung M, Less G B, Sastry A M. A review of conduction phenomena in Li-ion batteries[J]. J. Power Sources, 2010, 195(24): 7904-7929.
doi: 10.1016/j.jpowsour.2010.06.060 URL |
[21] |
Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y F, Ceder G. Design principles for solid-state lithium superionic conductors[J]. Nat. Mater., 2015, 14(10): 1026-1031.
doi: 10.1038/nmat4369 pmid: 26280225 |
[22] |
Rodger A R, Kuwano J, West A R. Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4[J]. Solid State Ion., 1985, 15(3): 185-198.
doi: 10.1016/0167-2738(85)90002-5 URL |
[23] |
Kraft M A, Culver S P, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier W G. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I)[J]. J. Am. Chem. Soc., 2017, 139(31): 10909-10918.
doi: 10.1021/jacs.7b06327 URL |
[24] |
He X F, Bai Q, Liu Y S, Nolan A M, Ling C, Mo Y F. Crystal structural framework of lithium super-ionic conductors[J]. Adv. Energy Mater., 2019, 9(43): 1902078.
doi: 10.1002/aenm.v9.43 URL |
[25] |
Metselaar R, Oversluizen G. The meyer-neldel rule in semiconductors[J]. J. Solid State Chem., 1984, 55(3): 320-326.
doi: 10.1016/0022-4596(84)90284-6 URL |
[26] | Qian H. Entropy-enthalpy compensation: Conformational fluctuation and induced-fit[J]. J. Chem. Phys., 1998, 109(22): 10015-10017. |
[27] |
Krauskopf T, Muy S, Culver S P, Ohno S, Delaire O, Shao-Horn Y, Zeier W G. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4-x Sex[J]. J. Am. Chem. Soc., 2018, 140(43): 14464-14473.
doi: 10.1021/jacs.8b09340 pmid: 30284822 |
[28] | Almond D P, West A R. Entropy effects in ionic conductivity[J]. Solid State Ion., 1986, 18-19: 1105-1109. |
[29] |
Ngai K L. Meyer-Neldel rule and anti Meyer-Neldel rule of ionic conductivity: Conclusions from the coupling model[J]. Solid State Ion., 1998, 105(1): 231-235.
doi: 10.1016/S0167-2738(97)00469-4 URL |
[30] |
Di Stefano D, Miglio A, Robeyns K, Filinchuk Y, Lech-artier M, Senyshyn A, Ishida H, Spannenberger S, Prutsch D, Lunghammer S, Rettenwander D, Wilkening M, Roling B, Kato Y, Hautier G. Superionic diffusion through frustrated energy landscape[J]. Chem, 2019, 5(9): 2450-2460.
doi: 10.1016/j.chempr.2019.07.001 |
[31] |
Funke K, Banhatti R D, Wilmer D, Dinnebier R, Fitch A, Jansen M. Low-temperature phases of rubidium silver iodide: crystal structures and dynamics of the mobile silver ions[J]. J. Phys. Chem. A, 2006, 110(9): 3010-3016.
doi: 10.1021/jp054807v URL |
[1] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
[2] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[3] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[4] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[5] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[6] | 马嘉林, 王红春, 龚正良, 杨勇. 石榴石型固态电解质/铝锂合金界面构筑及电化学性能[J]. 电化学(中英文), 2020, 26(2): 262-269. |
[7] | 郭择良,伍 晖. 锂离子电池硅负极循环稳定性研究进展[J]. 电化学(中英文), 2016, 22(5): 499-512. |
[8] | 钟贵明,刘子庚,王大为,李琦,傅日强,杨勇. 锂/钠离子电池材料的固体核磁共振研究进展[J]. 电化学(中英文), 2016, 22(3): 231-243. |
[9] | 郑杰允,郑浩,汪锐,李泓*,陈立泉. 力曲线用于硅负极材料表面膜的研究[J]. 电化学(中英文), 2013, 19(6): 530-536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||