电化学(中英文) ›› 2023, Vol. 29 ›› Issue (3): 2217007. doi: 10.13208/j.electrochem.2217007
所属专题: “下一代二次电池”专题文章
罗宇a, 马如琴a, 龚正良b,*(), 杨勇a,b,*()
收稿日期:
2022-08-23
修回日期:
2022-09-14
接受日期:
2022-10-06
出版日期:
2023-03-28
发布日期:
2022-10-08
Yu Luoa, Ru-Qin Maa, Zheng-Liang Gongb,*(), Yong Yanga,b,*()
Received:
2022-08-23
Revised:
2022-09-14
Accepted:
2022-10-06
Published:
2023-03-28
Online:
2022-10-08
Contact:
*Tel: (592-86)2880703, E-mail address: About author:
First author contact:#Yu Luo and Ru-Qin Ma contributed equally to this work.
Supported by:
摘要:
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。
罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007.
Yu Luo, Ru-Qin Ma, Zheng-Liang Gong, Yong Yang. Recent Research Progresses of Solid-State Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2023, 29(3): 2217007.
[1] |
Yang X F, Luo J, Sun X L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chem. Soc. Rev., 2020, 49(7): 2140-2195.
doi: 10.1039/c9cs00635d pmid: 32118221 |
[2] |
Umeshbabu E, Zheng B Z, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes[J]. Electrochem. Energy Rev., 2019, 2(2): 199-230.
doi: 10.1007/s41918-019-00029-3 |
[3] |
Wu J H, Shen L, Zhang Z H, Liu G Z, Wang Z Y, Zhou D, Wan H L, Xu X X, Yao X Y. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochem. Energy Rev., 2021, 4(1): 101-135.
doi: 10.1007/s41918-020-00081-4 |
[4] |
Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv. Mater., 2021, 33(6) : 2000751.
doi: 10.1002/adma.v33.6 URL |
[5] |
Ohno S, Zeier W G. Toward practical solid-state lithium-sulfur batteries: Challenges and perspectives[J]. Acc. Mater. Res., 2021, 2(10): 869-880.
doi: 10.1021/accountsmr.1c00116 URL |
[6] |
Schlem R, Burmeister C F, Michalowski P, Ohno S, Dewald G F, Kwade A, Zeier W G. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Adv. Energy Mater., 2021, 11(30): 2101022.
doi: 10.1002/aenm.v11.30 URL |
[7] |
Li M Y, Liu T, Shi Z, Xue W J, Hu Y S, Li H, Huang X J, Li J, Suo L M, Chen L Q. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Adv. Mater., 2021, 33(26): 2008723.
doi: 10.1002/adma.v33.26 URL |
[8] |
Cai X M, Cui B W, Ye B, Wang W Q, Ding J L, Wang G C. Poly(ionic liquid)-based quasi-solid-state copolymer electrolytes for dynamic-reversible adsorption of lithium polysulfides in lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(41): 38136-38146.
doi: 10.1021/acsami.9b12297 URL |
[9] |
Guan X, Wu Q P, Zhang X W, Guo X H, Li C L, Xu J. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries[J]. Chem. Eng. J., 2020, 382: 122935.
doi: 10.1016/j.cej.2019.122935 URL |
[10] |
Mackanic D G, Michaels W, Lee M, Feng D W, Lopez J, Qin J, Cui Y, Bao Z N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Adv. Energy Mater., 2018, 8(25): 1800703.
doi: 10.1002/aenm.v8.25 URL |
[11] |
Judez X, Zhang H, Li C M, Eshetu G G, Zhang Y, Gonzalez-Marcos J A, Armand M, Rodriguez-Martinez L M. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. J. Phys. Chem. Lett., 2017, 8(15): 3473-3477.
doi: 10.1021/acs.jpclett.7b01321 pmid: 28696704 |
[12] |
Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919.
doi: 10.1002/adfm.v28.38 URL |
[13] |
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv. Mater., 2020, 32(17): 2000399.
doi: 10.1002/adma.v32.17 URL |
[14] |
Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F Y, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes[J]. Joule, 2020, 4(1): 207-221.
doi: 10.1016/j.joule.2019.11.015 URL |
[15] |
Wang G L, Zhu X Y, Rashid A, Hu Z L, Sun P F, Zhang Q B, Zhang L. Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium-metal batteries operating at 35 °C[J]. J. Mater. Chem. A, 2020, 8(26): 13351-13363.
doi: 10.1039/D0TA00335B URL |
[16] |
Sheng O W, Jin C B, Luo J M, Yuan H D, Fang C, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(25): 12934-12942.
doi: 10.1039/C7TA03699J URL |
[17] |
Cai X M, Ding J L, Chi Z Y, Wang W Q, Wang D Y, Wang G C. Rearrangement of ion transport path on nano-cross-linker for all-solid-state electrolyte with high room temperature ionic conductivity[J]. ACS Nano, 2021, 15(12): 20489-20503.
doi: 10.1021/acsnano.1c09023 pmid: 34905333 |
[18] |
Zhang H, Oteo U, Judez X, Eshetu G G, Martinez-Ibanez M, Carrasco J, Li C M, Armand M. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702.
doi: 10.1016/j.joule.2019.05.003 |
[19] |
Wang Y, Ji H F, Zhang X J, Shi J J, Li X N, Jiang X X, Qu X W. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li-S battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(14): 16469-16477.
doi: 10.1021/acsami.1c02309 URL |
[20] |
Marceau H, Kim C S, Paolella A, Ladouceur S, Lagace M, Chaker M, Vijh A, Guerfi A, Julien C M, Mauger A, Armand M, Hovington P, Zaghib K. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. J. Power Sources, 2016, 319: 247-254.
doi: 10.1016/j.jpowsour.2016.03.093 URL |
[21] |
Song Y X, Shi Y, Wan J, Lang S Y, Hu X C, Yan H J, Liu B, Guo Y G, Wen R, Wan L J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study[J]. Energy Environ. Sci., 2019, 12(8): 2496-2506.
doi: 10.1039/C9EE00578A URL |
[22] |
Li X, Wang D H, Wang H C, Yan H F, Gong Z L, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Appl. Mater. Inter., 2019, 11(25): 22745-22753.
doi: 10.1021/acsami.9b05212 URL |
[23] |
Bai Y, Zhao Y B, Li W D, Meng L H, Bai Y P, Chen G R. New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping[J]. ACS Sustain. Chem. Eng., 2019, 7(15): 12930-12937.
doi: 10.1021/acssuschemeng.9b01937 URL |
[24] |
Liu Y, Liu H W, Lin Y T, Zhao Y X, Yuan H, Su Y P, Zhang J F, Ren S Y, Fan H Y, Zhang Y G. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Adv. Funct. Mater., 2021, 31(41): 2104863.
doi: 10.1002/adfm.v31.41 URL |
[25] |
Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195.
doi: 10.1021/jacs.1c07754 URL |
[26] |
Ji Y C, Yang K, Liu M Q, Chen S M, Liu X H, Yang B, Wang Z J, Huang W Y, Song Z B, Xue S D, Fu Y D, Yang L Y, Miller T S, Pan F. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries[J]. Adv. Funct. Mater., 2021, 31(47): 2104830.
doi: 10.1002/adfm.v31.47 URL |
[27] |
Kim K J, Balaish M, Wadaguchi M, Kong LP, Rupp J L M. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv. Energy Mater., 2021, 11(1): 2002689.
doi: 10.1002/aenm.v11.1 URL |
[28] |
AbdelHamid A A, Cheong J L, Ying J Y. Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery[J]. Nano Energy, 2020, 71: 104633.
doi: 10.1016/j.nanoen.2020.104633 URL |
[29] |
Yu X W, Liu Y J, Goodenough J B, Manthiram A. Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries[J]. ACS Appl. Mater. Inter., 2021, 13(26): 30703-30711.
doi: 10.1021/acsami.1c07547 URL |
[30] | Bag S, Zhou C, Kim P J, Pol V G, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Mater., 2020, 24: 198-207. |
[31] |
Li W W, Sun C Z, Jin J, Li Y P, Chen C H, Wen Z Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. J. Mater. Chem. A, 2019, 7(48): 27304-27312.
doi: 10.1039/C9TA10400C URL |
[32] | Yan C Y, Zhou Y, Cheng H, Orenstein R, Zhu P, Yildiz O, Bradford P, Jur J, Wu N Q, Dirican M, Zhang X W. Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery[J]. Energy Storage Mater., 2022, 44: 136-144. |
[33] |
Kou W J, Wang J X, Li W P, Lv R X, Peng N, Wu W J, Wang J T. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium-sulfur battery[J]. J. Membr. Sci., 2021, 634: 119432.
doi: 10.1016/j.memsci.2021.119432 URL |
[34] |
Liu Z C, Fu W J, Payzant E A, Yu X, Wu Z L, Dudney N J, Kiggans J, Hong K L, Rondinone A J, Liang C D. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J. Am. Chem. Soc., 2013, 135(3): 975-978.
doi: 10.1021/ja3110895 URL |
[35] |
Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Adv. Mater., 2005, 17(7): 918-921.
doi: 10.1002/(ISSN)1521-4095 URL |
[36] |
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 627-631.
doi: 10.1039/C3EE41655K URL |
[37] |
Kanno R, Maruyama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system[J]. J. Electrochem. Soc., 2001, 148(7): A742-A746.
doi: 10.1149/1.1379028 URL |
[38] |
Ong S P, Mo Y F, Richards W D, Miara L, Lee H S, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy Environ. Sci., 2013, 6(1): 148-156.
doi: 10.1039/C2EE23355J URL |
[39] |
Boulineau S, Courty M, Tarascon J M, Viallet V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ion., 2012, 221: 1-5.
doi: 10.1016/j.ssi.2012.06.008 URL |
[40] |
Chen S R, Niu C J, Lee H, Li Q Y, Yu L, Xu W, Zhang J G, Dufek E J, Whittingham M S, Meng S, Xiao J, Liu J. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4): 1094-1105.
doi: 10.1016/j.joule.2019.02.004 URL |
[41] |
Liang J W, Chen N, Li X N, Li X, Adair K R, Li J J, Wang C H, Yu C, Banis M N, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Huang Y N, Sun X L. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem. Mat., 2020, 32(6): 2664-2672.
doi: 10.1021/acs.chemmater.9b04764 URL |
[42] |
Bonnick P, Niitani K, Nose M, Suto K, Arthur T S, Muldoon J. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte[J]. J. Mater. Chem. A, 2019, 7(42): 24173-24179.
doi: 10.1039/C9TA06971B URL |
[43] |
Tufail M K, Zhou L, Ahmad N, Chen R J, Faheem M, Yang L, Yang W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries[J]. Chem. Eng. J., 2021, 407: 127149.
doi: 10.1016/j.cej.2020.127149 URL |
[44] |
Wu Z J, Xie Z K, Yoshida A, An X W, Wang Z D, Hao X G, Abudula A, Guan G Q. Novel SeS2 doped Li2S-P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries[J]. Chem. Eng. J., 2020, 380: 122419.
doi: 10.1016/j.cej.2019.122419 URL |
[45] |
Yu C, Hageman J, Ganapathy S, van Eijck L, Zhang L, Adair K R, Sun X L, Wagemaker M. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries[J]. J. Mater. Chem. A, 2019, 7(17): 10412-10421.
doi: 10.1039/C9TA02126D URL |
[46] |
Zhou L, Tufail M K, Ahmad N, Song T L, Chen R J, Yang W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(24): 28270-28280.
doi: 10.1021/acsami.1c06328 URL |
[47] |
Wei C C, Yu C, Peng L F, Zhang Z Q, Xu R N, Wu Z K, Liao C, Zhang W, Zhang L, Cheng S J, Xie J. Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances[J]. Mater. Adv., 2022, 3(2): 1047-1054.
doi: 10.1039/D1MA00987G URL |
[48] |
Zhu Y Z, He X F, Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl. Mater. Inter., 2015, 7(42): 23685-23693.
doi: 10.1021/acsami.5b07517 URL |
[49] |
Han F D, Zhu Y Z, He X F, Mo Y F, Wang C S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12solid electrolytes[J]. Adv. Energy Mater., 2016, 6(8): 1501590.
doi: 10.1002/aenm.201501590 URL |
[50] | Bai X T, Yu T W, Ren Z M, Gong S M, Yang R, Zhao C R. Key issues and emerging trends in sulfide all solid state lithium battery[J]. Energy Storage Mater., 2022, 51: 527-549. |
[51] | Zhang Z X, Zhang L, Yan X L, Wang H Q, Liu Y Y, Yu C, Cao X T, van Eijck L, Wen B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. J. Power Sources, 2019, 410: 162-170. |
[52] |
Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nat. Commun., 2018, 9: 4037.
doi: 10.1038/s41467-018-06123-2 pmid: 30279498 |
[53] |
Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15(3): 991-1033.
doi: 10.1039/D1EE03032A URL |
[54] |
Jiang Z, Peng H L, Liu Y, Li Z X, Zhong Y, Wang X L, Xia X H, Gu C D, Tu J P. A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2021, 11(36): 2101521.
doi: 10.1002/aenm.v11.36 URL |
[55] |
Tufail M K, Ahmad N, Zhou L, Faheem M, Yang L, Chen R J, Yang W. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries[J]. Chem. Eng. J., 2021, 425: 130535.
doi: 10.1016/j.cej.2021.130535 URL |
[56] |
Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S, Xu X X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, 7(17): 1602923.
doi: 10.1002/aenm.v7.17 URL |
[57] |
Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew. Chem. Int. Edit., 2019, 58(24): 8039-8043.
doi: 10.1002/anie.v58.24 URL |
[58] |
Emly A, Kioupakis E, Van der Ven A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chem. Mat., 2013, 25(23): 4663-4670.
doi: 10.1021/cm4016222 URL |
[59] |
Shi X M, Zeng Z C, Sun M Z, Huang B L, Zhang H T, Luo W, Huang Y H, Du Y P, Yan C H. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Lett., 2021, 21(21): 9325-9331.
doi: 10.1021/acs.nanolett.1c03573 URL |
[60] |
Han F D, Yue J, Fan X L, Gao T, Luo C, Ma Z H, Suo L M, Wang C S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Lett., 2016, 16(7): 4521-4527.
doi: 10.1021/acs.nanolett.6b01754 pmid: 27322663 |
[61] |
Zhang Q, Huang N, Huang Z, Cai L T, Wu J H, Yao X Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. J. Energy Chem., 2020, 40: 151-155.
doi: 10.1016/j.jechem.2019.03.006 URL |
[62] | Hou L P, Yuan H, Zhao C Z, Xu L, Zhu G L, Nan H X, Cheng X B, Liu Q B, He C X, Huang J Q, Zhang Q. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 25: 436-442. |
[63] |
Li X N, Liang J W, Luo J, Wang C H, Li X, Sun Q, Li R Y, Zhang L, Yang R, Lu S G, Huang H, Sun X L. High-performance Li-SeSx all-solid-state lithium batteries[J]. Adv. Mater., 2019, 31(17): 1808100.
doi: 10.1002/adma.v31.17 URL |
[64] |
Tanibata N, Tsukasaki H, Deguchi M, Mori S, Hayashi A, Tatsumisago M. A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries[J]. J. Mater. Chem. A, 2017, 5(22): 11224-11228.
doi: 10.1039/C7TA01481C URL |
[65] |
Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett., 2016, 16(11): 7148-7154.
pmid: 27766883 |
[66] |
Sun X, Li Q, Cao D X, Wang Y, Anderson A, Zhu H L. High surface area N-doped carbon fibers with accessible reaction sites for all-solid-state lithium-sulfur batteries[J]. Small, 2022, 18(6): 2105678.
doi: 10.1002/smll.v18.6 URL |
[67] |
Wang L, Yin X S, Li B, Zheng G W. Mixed ionically/electronically conductive double-phase interface enhanced solid-state charge transfer for a high-performance all-solid-state Li-S battery[J]. Nano Lett., 2022, 22(1): 433-440.
doi: 10.1021/acs.nanolett.1c04228 URL |
[68] |
Sakuda A, Sato Y, Hayashi A, Tatsumisago M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries[J]. Energy Technol., 2019, 7(12): 1900077.
doi: 10.1002/ente.v7.12 URL |
[69] |
Dewald G F, Ohno S, Hering J G C, Janek J, Zeier W G. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries[J]. Batteries Supercaps, 2021, 4(1): 183-194.
doi: 10.1002/batt.v4.1 URL |
[70] |
Liu Y Z, Meng X Y, Wang Z Y, Qiu J S. A Li2S-based all-solid-state battery with high energy and superior safety[J]. Sci. Adv., 2022, 8(1): eabl8390.
doi: 10.1126/sciadv.abl8390 URL |
[71] |
Gamo H, Maeda T, Hikima K, Deguchi M, Fujita Y, Kawasaki Y, Sakuda A, Muto H, Phuc NHH, Hayashi A. Synthesis of an AlI3-doped Li2S positive electrode with superior performance in all-solid-state batteries[J]. Mater. Adv., 2022, 3(5): 2488-2494.
doi: 10.1039/D1MA01228B URL |
[72] | He Y M, Chen W J, Zhao Y M, Li Y F, Lv C Y, Li H X, Yang J G, Gao Z L, Luo J Y. Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2022, 49: 19-57. |
[73] |
Wan H L, Zhang B, Liu S F, Zhang J X, Yao X Y, Wang C S. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano Lett., 2021, 21(19): 8488-8494.
doi: 10.1021/acs.nanolett.1c03415 URL |
[74] |
Jiang M, Liu G Z, Zhang Q, Zhou D, Yao X Y. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(16): 18666-18672.
doi: 10.1021/acsami.1c00511 URL |
[75] |
Jiang H Z, Han Y, Wang H, Zhu Y H, Guo Q P, Jiang H L, Zheng C M, Xie K. Facile synthesis of a mixed-conductive Li2S composites for all-solid-state lithium-sulfur batteries[J]. Ionics, 2020, 26(9): 4257-4265.
doi: 10.1007/s11581-020-03591-9 |
[76] |
Wang D H, Wu Y Q, Zheng X F, Tang S J, Gong Z L, Yang Y. Li2S @NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries[J]. J. Power Sources, 2020, 479: 228792.
doi: 10.1016/j.jpowsour.2020.228792 URL |
[77] |
Gao X, Zheng X L, Wang J Y, Zhang Z W, Xiao X, Wan J Y, Ye Y S, Chou L Y, Lee H K, Wang J Y, Vila R A, Yang Y F, Zhang P, Wang LW, Cui Y. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries[J]. Nano Lett., 2020, 20(7): 5496-5503.
doi: 10.1021/acs.nanolett.0c02033 pmid: 32515973 |
[78] |
Yan H F, Wang H C, Wang D H, Li X, Gong Z L, Yang Y. In situ generated Li2S -C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Lett., 2019, 19(5): 3280-3287.
doi: 10.1021/acs.nanolett.9b00882 URL |
[79] |
Jiang H Z, Han Y, Wang H, Zhu Y H, Guo Q P, Jiang H L, Sun W W, Zheng C M, Xie K. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. J. Alloy. Compd., 2021, 874: 159763.
doi: 10.1016/j.jallcom.2021.159763 URL |
[80] |
El-Shinawi H, Cussen E J, Corr S A. A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries[J]. Nanoscale, 2019, 11(41): 19297-19300.
doi: 10.1039/c9nr06239d pmid: 31620760 |
[81] |
Li M Y, Pan H Y, Liu T, Xiong X L, Yu X Q, Hu Y S, Li H, Huang X J, Suo L M, Chen L Q. All-in-one ionic-electronic dual-carrier conducting framework thickening all-solid-state electrode[J]. ACS Energy Lett., 2022, 7(2): 766-772.
doi: 10.1021/acsenergylett.1c02666 URL |
[82] |
Wan H L, Liu G Z, Li Y L, Weng W, Mwizerwa J P, Tian Z Q, Chen L, Yao X Y. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries[J]. ACS Nano, 2019, 13(8): 9551-9560.
doi: 10.1021/acsnano.9b04538 pmid: 31398005 |
[83] |
Xu S Q, Kwok C Y, Zhou L D, Zhang Z Z, Kochetkov I, Nazar L F. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture[J]. Adv. Funct. Mater., 2021, 31(2): 2004239.
doi: 10.1002/adfm.v31.2 URL |
[84] |
Santhosha A L, Nazer N, Koerver R, Randau S, Richter F H, Weber D A, Kulisch J, Adermann T, Janek J, Adelhelm P. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries[J]. Adv. Energy Mater., 2020, 10(41): 2002394.
doi: 10.1002/aenm.v10.41 URL |
[85] | Zhang Q, Ding Z G, Liu G Z, Wan H L, Mwizerwa J P, Wu J H, Yao X Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2019, 23: 168-180. |
[86] |
Dewald G F, Liaqat Z, Lange M A, Tremel W, Zeier W G. Influence of iron sulfide nanoparticle sizes in solid-state batteries[J]. Angew. Chem. Int. Edit., 2021, 60(33): 17952-17956.
doi: 10.1002/anie.v60.33 URL |
[87] |
Santhosha A L, Nayak P K, Pollok K, Langenhorst F, Adelhelm P. Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries[J]. J. Phys. Chem. C, 2019, 123(19): 12126-12134.
doi: 10.1021/acs.jpcc.9b01816 |
[88] |
Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction[J]. Chem. Mat., 2009, 21(14): 3162-3176.
doi: 10.1021/cm900581b URL |
[89] | Hosseini S M, Varzi A, Ito S, Aihara Y, Passerini S. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity[J]. Energy Storage Mater., 2020, 27: 61-68. |
[90] |
Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): eabn4372.
doi: 10.1126/sciadv.abn4372 URL |
[91] |
Tan D H S, Chen Y T, Yang H D, Bao W, Sreenarayanan B, Doux J M, Li W K, Lu B Y, Ham S Y, Sayahpour B, Scharf J, Wu E A, Deysher G, Han H E, Hah H J, Jeong H, Lee J B, Chen Z, Meng Y S. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499.
doi: 10.1126/science.abg7217 pmid: 34554780 |
[92] |
Chen Z R, Liang Z T, Zhong H Y, Su Y, Wang K J, Yang Y. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries[J]. ACS Energy Lett., 2022, 7(8): 2761-2770.
doi: 10.1021/acsenergylett.2c01334 URL |
[93] |
Shin M, Gewirth A A. Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life[J]. Adv. Energy Mater., 2019, 9(26): 1900938.
doi: 10.1002/aenm.v9.26 URL |
[94] |
Sun X, Stavola A M, Cao D X, Bruck A M, Wang Y, Zhang Y L, Luan P C, Gallaway J W, Zhu H L. Operando EDXRD study of all-solid-state lithium batteries coupling thioantimonate superionic conductors with metal sulfide[J]. Adv. Energy Mater., 2021, 11(3): 2002861.
doi: 10.1002/aenm.v11.3 URL |
[95] |
Liu M, Wang C, Zhao C L, van der Maas E, Lin K, Arszelewska V A, Li B H, Ganapathy S, Wagemaker M. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nat. Commun., 2021, 12(1): 5943.
doi: 10.1038/s41467-021-26190-2 pmid: 34642334 |
[96] |
Umeshbabu E, Zheng B Z, Zhu J P, Wang H C, Li Y X, Yang Y. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability[J]. ACS Appl. Mater. Inter., 2019, 11(20): 18436-18447.
doi: 10.1021/acsami.9b03726 |
[97] |
Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6): 2000721.
doi: 10.1002/adma.v33.6 URL |
[98] |
Wan H L, Mwizerwa J P, Qi X G, Liu X, Xu X X, Li H, Hu Y S, Yao X Y. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817.
doi: 10.1021/acsnano.8b00073 URL |
[99] |
Shi J M, Liu G Z, Weng W, Cai L T, Zhang Q, Wu J H, Xu X X, Yao X Y. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries[J]. ACS Appl. Mater. Inter., 2020, 12(12): 14079-14086.
doi: 10.1021/acsami.0c02085 URL |
[100] |
Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. J. Power Sources, 2018, 374: 107-112.
doi: 10.1016/j.jpowsour.2017.10.093 URL |
[101] |
Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Edit., 2019, 58(51): 18647-18653.
doi: 10.1002/anie.v58.51 URL |
[102] | Xu J, Liu L, Yao N, Wu F, Li H, Chen L. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries[J]. Mater. Today Nano, 2019, 8: 100048. |
[103] |
Cao Y, Zuo P J, Lou S F, Sun Z, Li Q, Huo H, Ma Y L, Du C Y, Gao Y Z, Yin G P. A quasi-solid-state Li-S battery with high energy density, superior stability and safety[J]. J. Mater. Chem. A, 2019, 7(11): 6533-6542.
doi: 10.1039/c9ta00146h |
[104] |
Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1): 5700.
doi: 10.1038/s41467-020-19528-9 pmid: 33177510 |
[105] |
Zhu C B, Usiskin R E, Yu Y, Maier J. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): eaao2808.
doi: 10.1126/science.aao2808 URL |
[106] |
Hakari T, Fujita Y, Deguchi M, Kawasaki Y, Otoyama M, Yoneda Y, Sakuda A, Tatsumisago M, Hayashi A. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Adv. Funct. Mater., 2022, 32(5): 2106174.
doi: 10.1002/adfm.v32.5 URL |
[107] |
Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo S. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nat. Commun., 2019, 10: 1081.
doi: 10.1038/s41467-019-09061-9 pmid: 30842419 |
[108] |
Kisu K, Kim S, Yoshida R, Oguchi H, Toyama N, Orimo S. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance[J]. J. Energy Chem., 2020, 50: 424-429.
doi: 10.1016/j.jechem.2020.03.069 URL |
[109] |
Ruan Y D, Lu Y, Huang X, Su J M, Sun C Z, Jin J, Wen Z Y. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries[J]. J. Mater. Chem. A, 2019, 7(24): 14565-14574.
doi: 10.1039/C9TA01911A URL |
[110] | Bosubahu D, Sivaraj J, Sampathkumar R, Ramesha K. Lagpili interface modification through a wetted polypropylene interlayer for solid state Li-ion and Li-S batteries[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4118-4125. |
[111] |
Judez X, Eshetu G G, Gracia I, Lopez-Aranguren P, Gonzalez-Marcos J A, Armand M, Rodriguez-Martinez L M, Zhang H, Li C M. Understanding the role of nano-aluminum oxide in all-solid-state lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(2): 326-330.
doi: 10.1002/celc.v6.2 URL |
[112] |
Yin X S, Wang L, Kim Y, Ding N, Kong J H, Safanama D, Zheng Y, Xu J W, Repaka D V M, Hippalgaonkar K, Lee S W, Adams S, Zheng G W. Thermal conductive 2D boron nitride for high-performance all-solid-state lithium-sulfur batteries[J]. Adv. Sci., 2020, 7(19): 2001303.
doi: 10.1002/advs.v7.19 URL |
[113] |
Fan Z J, Ding B, Zhang T F, Lin Q Y, Malgras V, Wang J, Dou H, Zhang X G, Yamauchi Y. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition[J]. Small, 2019, 15(46): 1903952.
doi: 10.1002/smll.v15.46 URL |
[114] | Li J, Huo F, Chen T H, Yan H W, Yang Y X, Zhang S J, Chen S M. In-situ construction of stable cathode/Li interfaces simultaneously via different electron density AZO compounds for solid-state lithium metal batteries[J]. Energy Storage Mater., 2021, 40: 394-401. |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[6] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[7] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[10] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[11] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[12] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[13] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[14] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[15] | 张丙凯, 杨卢奕, 李舜宁, 潘锋. 固态电解质中锂离子传输机理研究进展[J]. 电化学(中英文), 2021, 27(3): 269-277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||