电化学(中英文) ›› 2022, Vol. 28 ›› Issue (8): 2112131. doi: 10.13208/j.electrochem.211213
所属专题: “下一代二次电池”专题文章
收稿日期:
2021-12-13
修回日期:
2022-01-11
出版日期:
2022-08-28
发布日期:
2022-03-04
Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang*(), Chun Zhan*()
Received:
2021-12-13
Revised:
2022-01-11
Published:
2022-08-28
Online:
2022-03-04
Contact:
Tel: (86-10)62332358, E-mail: 摘要:
高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。
王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131.
Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan. Facile One-Step Solid-State Synthesis of Ni-Rich Layered Oxide Cathodes for Lithium-Ion Batteries[J]. Journal of Electrochemistry, 2022, 28(8): 2112131.
[1] |
Liu Y Y, Zhu Y Y, Cui Y. Challenges and opportunities towards fast-charging battery materials[J]. Nat. Energy, 2019, 4(7): 540-550.
doi: 10.1038/s41560-019-0405-3 URL |
[2] | Cano Z P, Banham D, Ye S Y, Hintennach A, Lu J, Fowler M, Chen Z W. Batteries and fuel cells for emerging electric vehicle markets[J]. Nat. Energy, 2018, 3(4): 279-289. |
[3] |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z URL |
[4] |
Liu A R, Zhang N, Stark J E, Arab P, Li H Y, Dahn J R. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: Part I. two-step lithiation method for Al- or Mg-doped LiNiO2[J]. J. Electrochem. Soc., 2021, 168(4): 040531.
doi: 10.1149/1945-7111/abf7e8 URL |
[5] |
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again- the journey of LiNiO2 as a cathode active material[J]. Angew. Chem.-Int. Edit., 2019, 58(31): 10434-10458.
doi: 10.1002/anie.201812472 URL |
[6] |
Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J, Sun Y K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Lett., 2017, 2(1): 196-223.
doi: 10.1021/acsenergylett.6b00594 URL |
[7] |
Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes[J]. ACS Energy Lett., 2020, 5(4): 1136-1146.
doi: 10.1021/acsenergylett.0c00191 URL |
[8] |
Zhang H L, Omenya F, Yan P F, Luo L L, Whittingham M S, Wang C M, Zhou G W. Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries[J]. ACS Energy Lett., 2017, 2(11): 2607-2615.
doi: 10.1021/acsenergylett.7b00907 URL |
[9] | Li H Y, Cormier M, Zhang N, Inglis J, Li J, Dahn J R. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?[J]. J. Electrochem. Soc., 2019, 166(4): A429-A439. |
[10] | Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J, Dahn J R. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries[J]. J. Electrochem. Soc., 2019, 166(13): A2826-A2833. |
[11] |
Dahn J R, Fuller E W, Obrovac M, Vonsacken U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ion., 1994, 69(3-4): 265-270.
doi: 10.1016/0167-2738(94)90415-4 URL |
[12] |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. Sect. A, 1976, 32(5): 751-767.
doi: 10.1107/S0567739476001551 URL |
[13] |
Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng Y S, Van der Ven A. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials[J]. Adv. Energy Mater, 2017, 7(20): 1602888.
doi: 10.1002/aenm.201602888 URL |
[14] |
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization[J]. Adv. Energy Mater, 2018, 8(6): 1702028.
doi: 10.1002/aenm.201702028 URL |
[15] |
Delmas C, Pérès J P, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. J. Power Sources, 1997, 68(1): 120-125.
doi: 10.1016/S0378-7753(97)02664-5 URL |
[16] |
Rougier A, Gravereau P, Delmas C. Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies[J]. J. Electro-chem. Soc., 1996, 143(4): 1168-1175.
doi: 10.1149/1.1836614 URL |
[17] | Liu A, Zhang N, Li H Y, Inglis J, Wang Y Q, Yin S, Wu H H, Dahn J R. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries[J]. J. Electrochem. Soc., 2019, 166(16): A4025-A4033. |
[18] |
Yoon C S, Choi M J, Jun D W, Zhang Q, Kaghazchi P, Kim K H, Sun Y K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chem. Mater., 2018, 30(5): 1808-1814.
doi: 10.1021/acs.chemmater.8b00619 URL |
[19] |
Mu L Q, Zhang R, Kan W H, Zhang Y, Li L X, Kuai C G, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L L, Lin F. Dopant distribution in Co-free high-energy layered cathode materials[J]. Chem. Mater., 2019, 31(23): 9769-9776.
doi: 10.1021/acs.chemmater.9b03603 URL |
[20] | Delmas C, Braconnier J J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ion., 1981, 3-4(8): 165-169. |
[21] |
Guilmard M, Rougier A, Grüne A, Croguennec L, Delmas C. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. J. Power Sources, 2003, 115(2): 305-314.
doi: 10.1016/S0378-7753(03)00012-0 URL |
[22] | Albrecht S, Kümpers J, Kruft M, Malcus S, Vogler C, Wahl M, Wohlfahrt-Mehrens M. Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1-x(Ni1-y-z-CoyMz)O2 (M = Al, Mg)[J]. J. Power Sources, 2003, 119: 178-183. |
[23] |
Kim J, Cha H Y, Lee H Y, Oh P, Cho J H. Surface and interfacial chemistry in the nickel-rich cathode materials[J]. Batteries Supercaps, 2020, 3(4): 309-322.
doi: 10.1002/batt.201900131 URL |
[24] |
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Scha-lkwijk W. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005, 4(5): 366-377.
doi: 10.1038/nmat1368 URL |
[25] |
Zheng L T, Bennett J C, Obrovac M N. All-dry synthesis of single crystal NMC cathode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2020, 167(13): 130536.
doi: 10.1149/1945-7111/abbcb1 URL |
[26] |
Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (Rm) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993, 140(7): 1862-1870.
doi: 10.1149/1.2220730 URL |
[27] |
Zhou F, Zhao X M, van Bommel A, Rowe A W, Dahn J R. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides[J]. Chem. Mater., 2010, 22(3): 1015-1021.
doi: 10.1021/cm9018309 URL |
[28] |
Kim Y, Kim D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation me-thod[J]. ACS Appl. Mater. Interfaces, 2012, 4(2): 586-589.
doi: 10.1021/am201585z URL |
[29] |
Luo W B, Dahn J R. Preparation of Co1-zAlz(OH)2(NO3)z layered double hydroxides and Li(Co1-zAlz)O2[J]. Chem. Mater., 2009, 21(1): 56-62.
doi: 10.1021/cm801627t URL |
[30] |
Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J]. Adv. Funct. Mater., 2012, 22(4): 675-694.
doi: 10.1002/adfm.201102222 URL |
[31] |
Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. J. Solid State Chem., 1994, 110(2): 216-225.
doi: 10.1006/jssc.1994.1162 URL |
[32] |
Weigel T, Schipper F, Erickson E M, Susai F A, Markov-sky B, Aurbach D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations[J]. ACS Energy Lett., 2019, 4(2): 508-516.
doi: 10.1021/acsenergylett.8b02302 |
[33] |
Li W D, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nat. Energy., 2020, 5(1): 26-34.
doi: 10.1038/s41560-019-0513-0 URL |
[34] |
Lee E J, Chen Z H, Noh H J, Nam S C, Kang S, Kim D H, Amine K, Sun Y K. Development of microstrain in aged lithium transition metal oxides[J]. Nano Lett., 2014, 14(8): 4873-4880.
doi: 10.1021/nl5022859 URL |
[35] | Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2[J]. J. Electrochem. Soc., 2018, 165(11): A2682-A2695. |
[36] | Gilbert J A, Bareño J, Spila T, Trask S E, Miller D J, Polzin B J, Jansen A N, Abraham D P. Cycling behavior of NCM523/graphite lithium-ion cells in the 3-4.4 V range: diagnostic studies of full cells and harvested electrodes[J]. J. Electrochem. Soc., 2017, 164(1): A6054-A6065. |
[1] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[2] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[3] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[4] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[5] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[6] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[7] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[8] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[9] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[10] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[11] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[12] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[13] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
[14] | 李丽娟, 朱振东, 代娟, 王蓉蓉, 彭文. 锂离子电池正极材料Li[NixCoyMnz]O2 (x = 0.6, 0.85)相变对比[J]. 电化学(中英文), 2021, 27(4): 405-412. |
[15] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||