[1] |
Kathleen J S, Henry S. Chemical warfare agents: Their past and continuing threat and evolving therapies part I of II[J]. SKINmed: Dermatology for the Clinician, 2003, 2(4): 215-222.
doi: 10.1111/j.1540-9740.2003.02509.x
URL
|
[2] |
Chauhan S, Chauhan S, D’Cruz R, Faruqi S, Singh K K, Varma S, Singh M, Karthik V. Chemical warfare agents[J]. Environ. Toxicol. Pharmacol., 2008, 26(2): 113-122.
doi: 10.1016/j.etap.2008.03.003
URL
|
[3] |
Wang H, Wagner G W, Lu A X, Nguyen D L, Buchanan J H, McNutt P M, Karwacki C J. Photocatalytic oxidation of sulfur mustard and its simulant on BODIPY-incorporated polymer coatings and fabrics[J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 18771-18777.
doi: 10.1021/acsami.8b04576
URL
|
[4] |
Allon N, Amir A, Manisterski E, Rabinovitz I, Dachir S, Kadar T. Inhalation exposure to sulfur mustard in the guinea pig model: Clinical, biochemical and histopathological characterization of respiratory injuries[J]. Toxicol. Appl. Pharmacol., 2009, 241(2): 154-162.
doi: 10.1016/j.taap.2009.08.006
URL
|
[5] |
Mitchell J K, Arcibar-Orozco J A, Bandosz T J. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide[J]. Appl. Surf. Sci., 2016, 390: 735-743.
doi: 10.1016/j.apsusc.2016.08.118
URL
|
[6] |
Qiu C K, Liu X L, Cheng C Q, Gong Y J, Xiong W, Guo Y X, Wang C, Zhao J C, Che Y K. Ultrasensitive detection of sulfur mustard via differential noncovalent interactions[J]. Anal. Chem., 2019, 91(10): 6408-6412.
doi: 10.1021/acs.analchem.9b00709
URL
|
[7] |
Witkiewicz Z, Neffe S. Chromatographic analysis of chemical warfare agents and their metabolites in biological samples[J]. Trac-Trends Anal. Chem., 2020, 130: 115960.
doi: 10.1016/j.trac.2020.115960
URL
|
[8] |
Kelly J T, Qualley A, Hughes G T, Rubenstein M H, Malloy T A, Piatkowski T. Improving quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study[J]. J. Chromatogr. A, 2021, 1636: 461784.
doi: 10.1016/j.chroma.2020.461784
URL
|
[9] |
Chen B(陈博), Yu H L(于惠兰), Liu S L(刘石磊), Liu C C(刘昌财), Liang L H(梁龙辉), Yang Y(杨旸), Wu J N(吴姬娜), Li X S(李晓森). Analysis of the sulfur mustard adduct to human hemoglobin in blood samples exposed to trace sulfur mustard by UHPLC-MS/MS[J]. J. Chin. Spectrom. Soc.(质谱学报), 2019, 40(4):305-313.
|
[10] |
Dai S S(戴姗姗), Shen Y L(沈永玲), Li J(李健), Xiang F S(项丰顺). Comparative study on ultraviolet spectrophotometry and gas chromatography mass spectrometry determination of mustard gas[J]. Anal. Instrum. (分析仪器), 2017, (5): 97-100.
|
[11] |
Khairy M, Ayoub H A, Banks C E. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes[J]. Food Chem., 2018, 255: 104-111.
doi: 10.1016/j.foodchem.2018.02.004
URL
|
[12] |
Colozza N, Kehe K, Dionisi G, Popp T, Tsoutsoulopoulos A, Steinritz D, Moscone D, Arduini F. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection[J]. Biosens. Bioelectron., 2019, 129: 15-23.
doi: S0956-5663(19)30006-5
pmid: 30682684
|
[13] |
Singh V V, Sharma P K, Shrivastava A, Gutch P K, Ganesan K, Boopathi M. Electrochemical sensing of chemical warfare agent based on hybrid material silver-aminosilane graphene oxide[J]. Electroanalysis, 2020, 32(8): 1671-1680.
doi: 10.1002/elan.202000014
URL
|
[14] |
Sharma P K, Sikarwar B, Gupta G, Nigam A K, Tripathi B K, Pandey P, Boopathi M, Ganesan K, Singh B. A simple degradation method for sulfur mustard at ambient conditions using nickelphthalocyanine incorporated polypyrrole modified electrode[J]. Appl. Nanosci., 2014, 4(1): 37-46.
doi: 10.1007/s13204-012-0181-x
URL
|
[15] |
Sharma P K, Singh V V, Pandey L K, Sikarwar B, Boop-athi M, Ganesan K. Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/pPy nanocomposite[J]. Environ. Pollut., 2019, 246: 491-500.
doi: 10.1016/j.envpol.2018.12.036
URL
|
[16] |
Zhu X Q, He H, LI Y X, Wu H Y, Fu M L, Ye D Q, Wu J L, Huang H M, Hu Y, Niu X J. CeO2-supported Pt catalysts derived from MOFs by two pyrolysis strategies to improve the oxygen activation ability[J]. Nanomaterials, 2020, 10(5): 983.
doi: 10.3390/nano10050983
URL
|
[17] |
Ohta H, Tobayashi K, Kuroo A, Nakatsuka M, Kobayashi H, Fukuoka A, Hamasaka G, Uozumi Y, Murayama H, Tokunage M, Hayashi M. Surface modification of a supported Pt catalyst using ionic liquids for selective hydrodeoxygenation of phenols into arenes under mild conditions[J]. Chem.-Eur. J., 2019, 25(65): 14762-14766.
doi: 10.1002/chem.201902668
URL
|
[18] |
Zhao J J(赵建军), Guo C H(郭成海), Liu W W(刘卫卫), Qin M L(秦墨林), Huang Q B(黄启斌). Nano-Pt modified Pt-electrodes for the detection of HD[J]. Chem. Sens.(化学传感器), 2013, 33(1): 38-44.
|
[19] |
Jia Z(贾铮), Dai C S(戴长松), Chen L(陈玲). Electrochemical measurement method[M]. Beijing: Chemical Industry Press(化学工业出版社), 2006: 146-147.
|
[20] |
Ohrui Y, Hashimoto R, Ohmori T, Seto Y, Inoue H, Nakagaki H, Yoshikawa K, McDermott L. Continuous monitoring of chemical warfare agents in vapor using a Fourier transform infra-red spectroscopy instrument with multi pass gas cell, mercury cadmium telluride detector and rolling background algorithm[J]. Forensic Chem., 2020, 21: 100292.
doi: 10.1016/j.forc.2020.100292
URL
|
[21] |
Ning Y C(宁永成). Structural identification of organic compounds and organic spectroscopy[M]. Beijing: Science Press(科学出版社), 2014: 412-415.
|
[22] |
Xia Z Q(夏治强). Chemical weapons defense and destruction[M]. Beijing: Chemical Industry Press(化学工业出版社), 2014: 424-425.
|