电化学(中英文) ›› 2022, Vol. 28 ›› Issue (5): 2107061. doi: 10.13208/j.electrochem.210706
所属专题: “电有机合成、水处理”专题文章
收稿日期:
2021-07-05
修回日期:
2021-08-06
出版日期:
2022-05-28
发布日期:
2021-08-17
通讯作者:
* Tel: (86-21)64253469, E-mail: xszhang@ecust.edu.cn
基金资助:
Mao Lin, Niu Dong-Fang, Hu Shuo-Zhen, Zhang Xin-Sheng*()
Received:
2021-07-05
Revised:
2021-08-06
Published:
2022-05-28
Online:
2021-08-17
摘要:
本文以吡嗪和丙酮酸为原料,在铅电极上电化学活化过硫酸铵得到的硫酸根自由基为氧化剂,首次采用电化学方法合成了乙酰基吡嗪。探究了电流密度、反应物摩尔比、反应物浓度、过硫酸铵、 pH值对乙酰基吡嗪收率的影响,同时在外加硫酸亚铁的条件下探究复合活化法对收率的影响。在最优条件下(电流密度100 A·m-2,丙酮酸浓度0.33 mol·L-1,吡嗪浓度1.00 mol·L-1),该反应的收率为44.12%。该工艺反应条件温和,简单易控,利用“清洁能源”电子代替了过渡金属盐以活化过硫酸铵,因而是一种环境友好的乙酰基吡嗪制备方法,具有广阔的工业化应用前景。
毛麟, 钮东方, 胡硕真, 张新胜. 电化学合成乙酰基吡嗪[J]. 电化学(中英文), 2022, 28(5): 2107061.
Mao Lin, Niu Dong-Fang, Hu Shuo-Zhen, Zhang Xin-Sheng. Electrochemical Synthesis of Acetylpyrazine[J]. Journal of Electrochemistry, 2022, 28(5): 2107061.
[1] | Li L L(李磊磊), Zi Y Y(自妍妍), Zang C J(臧传近), Mao Z H(毛浙徽), Wei J(卫洁), Chen X(陈祥), Zhang L L(张雷亮). A new process for the synthesis of 2-acetylpyrazine[J]. Shangdong Chem. (山东化工), 2015, 44(19): 20-22. |
[2] |
Opletalova V, Hartl J, Patel A, Palat K, Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents[J]. Farmaco, 2002, 57(2): 135-144.
doi: 10.1016/S0014-827X(01)01187-9 URL |
[3] |
Liu Y F, Wang C L, Bai Y J, Han N, Jiao J P, Qi X L. A facile total synthesis of imatinib base and its analogues[J]. Org. Process Res. Dev., 2008, 12(3): 490-495.
doi: 10.1021/op700270n URL |
[4] | Bai Y J(白亚军), Liu Y F(刘毅锋), Zhang J(张娟), Dang W J(党文娟), Jiao J P(焦军平). Synthesis of 3-N, N-dimethylamino-1-aromatic heterocyclyl-2-propen-1-one[J]. J. Northwest Univ., Nat. Sci. (西北大学学报:自然科学版), 2007, 37(2): 231-234. |
[5] |
Satoh A, Nagatomi Y, Hirata Y, Ito S, Suzuki G, Kimura T, Maehara S, Hikichi H, Satow A, Hata M, Ohta H, Kawamoto H. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1, 3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist[J]. Bioorg. Med. Chem. Lett., 2009, 19(18): 5464-5468.
doi: 10.1016/j.bmcl.2009.07.097 URL |
[6] |
Siriwardana A I, Kathriarachchi K K, Nakamura I, Gridnev I D, Yamamoto Y. Synthesis of pyridinylpyrrole derivatives via the palladium-catalyzed reaction of acetylpyridin-es with methyleneaziridines[J]. J. Am. Chem. Soc., 2004, 126(43): 13898-13899.
pmid: 15506731 |
[7] |
Liu J B, Yi W, Wan Y, Ma L, Song H C. 1-(1-Arylethylidene) thiosemicarbazide derivatives: a new class of tyrosinase inhibitors[J]. Bioorg. Med. Chem., 2008, 16(3): 1096-1102.
doi: 10.1016/j.bmc.2007.10.102 URL |
[8] |
Wolt J. Chromate oxidation of alkylpyrazines[J]. J. Org. Chem., 1975, 40(8): 1178-1179.
doi: 10.1021/jo00896a042 URL |
[9] | Chen X(陈祥), Zang C J(臧传近), Wei J(卫洁), Li X(李新), Li L L(李磊磊), Zhang L L(张雷亮), Guo G(郭鸽), Song C B(宋成斌), Zhang G J(张广军), Wang X J(王新军). A kind of synthetic method of natural 2-acetylpyrazi-ne: CN, 108822047A[P]. 20181116. |
[10] |
Houminer Y, Southwick E W, Williams D L. Preparation of monoacylpyrazines[J]. J. Heterocycl. Chem., 1986, 23(2): 497-500.
doi: 10.1002/jhet.5570230237 URL |
[11] | Cai C S(蔡传松), Zhang Z F(张章福), Wang Y X(王云祥), Zhang M(张明), Ji S P(季淑平). Synthesis of pyrazine compounds[J]. J. Nanjing Univ., Nat. Sci. (南京大学学报自然科学版), 1984, 1(2): 245-249+217-218. |
[12] | Xuan B W(宣丙武), Xing X D(邢晓东), Xuan F X(宣富兴). A kind of synthetic method of 2-acetylpyrazine: CN, 109796416A[P], 20190524. |
[13] |
Schwaiger W, Cornelissen J M, Ward J P. A convenient synthesis of alkyl-and arylpyrazinyl ketones[J]. Food Chem., 1984, 13(3): 225-234.
doi: 10.1016/0308-8146(84)90075-X URL |
[14] |
Yang Z Y, Chen X, Wang S Z, Liu J D, Xie K, Wang A W, Tan Z. Synthesis of 2-aryl benzothiazoles via K2S2O82- mediated oxidative condensation of benzothiazoles with aryl aldehydes[J]. J. Org. Chem., 2012, 77(16): 7086-7091.
doi: 10.1021/jo300740j URL |
[15] |
Kan J, Huang S J, Lin J, Zhang M, Su W P. Silver-catalyzed arylation of (Hetero) arenes by oxidative decarbo-xylation of aromatic carboxylic acids[J]. Angew. Chem.-Int. Edit., 2015, 54(7): 2199-2203.
doi: 10.1002/anie.201408630 URL |
[16] |
Lv L Y, Lu S L, Guo Q X, Shen B J, Li Z P. Iron-catalyzed acylation-oxygenation of terminal alkenes for the synthesis of dihydrofurans bearing a quaternary carbon[J]. J. Org. Chem., 2015, 80(1): 698-704.
doi: 10.1021/jo502535k URL |
[17] |
Benischke A D, Leroux M, Knoll I, Knochel P. Iron-catalyzed acylation of polyfunctionalized aryl-and benzylzinc halides with acid chlorides[J]. Org. Lett., 2016, 18(15): 3626-3629.
doi: 10.1021/acs.orglett.6b01677 pmid: 27457108 |
[18] |
Yin Z P, Zhang Z, Soulé J F, Dixneuf P H, Wu X F. Iron-catalyzed carbonylative alkyl-acylation of heteroarenes[J]. J. Catal., 2019, 372: 272-276.
doi: 10.1016/j.jcat.2019.03.001 URL |
[19] |
Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries[J]. Soil. Sediment. Contam., 2003, 12(2): 207-228.
doi: 10.1080/713610970 URL |
[20] |
Huang K C, Zhao Z Q, Hoag G. E, Dahmani A, Block P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560.
doi: 10.1016/j.chemosphere.2005.02.032 URL |
[21] |
Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environ. Sci. Technol., 2008, 42(19): 7438-7443.
doi: 10.1021/es800832p URL |
[22] |
Chu W, Lau T K, Fung S C. Effects of combined and sequential addition of dual oxidants (H2O2/S2O82-) on the aqueous carbofuran photodegradation[J]. J. Agric. Food Chem., 2006, 54(26): 10047-10052.
doi: 10.1021/jf062018k URL |
[23] |
Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate[J]. Water Sci. Technol., 2006, 54(11-12): 317-325.
doi: 10.2166/wst.2006.731 URL |
[24] |
Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Res., 2009, 43(3): 684-694.
doi: 10.1016/j.watres.2008.10.045 pmid: 19038413 |
[25] |
Seiple I B, Su S, Rodriguez R A, Gianatassio R, Fujiwara Y, Sobel A L, Baran P S. Direct C-H arylation of electron-deficient heterocycles with arylboronic acids[J]. J. Am. Chem. Soc., 2010, 132(38): 13194-13196.
doi: 10.1021/ja1066459 pmid: 20812741 |
[26] |
Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Res., 2009, 43(3): 684-694.
doi: 10.1016/j.watres.2008.10.045 pmid: 19038413 |
[27] |
Li Y, Li H, Zhang J, Quan G X, Lan Y Q. Efficient degradation of Congo Red by sodium persulfate activated with zero-valent zinc[J]. Water Air Soil Pollut., 2014, 225(9): 2121.
doi: 10.1007/s11270-014-2121-8 URL |
[28] |
Rastogi A, Al-Abed S R, Dionysiou D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Appl. Catal. B-Environ., 2009, 85(3-4): 171-179.
doi: 10.1016/j.apcatb.2008.07.010 URL |
[29] |
Chanikya P, Nidheesh P, Babu D S, Gopinath A, Kumar M S. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes[J]. Sep. Purif. Technol., 2021, 254: 117570.
doi: 10.1016/j.seppur.2020.117570 URL |
[30] |
Reuber J, Reinhardt H, Johannsmann D. Formation of sur-face-attached responsive gel layers via electrochemically induced free-radical polymerization[J]. Langmuir, 2006, 22(7): 3362-3367.
doi: 10.1021/la053454o URL |
[31] | Xu N N(徐楠楠). Study on the process for electrosynthesis of ammonium persulfate[J]. Guangdong Chem. (广东化工), 2015, 42(6): 114+107. |
[1] | 张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华. 基于BP神经网络的电化学还原硝酸盐过程智能控制[J]. 电化学(中英文), 2023, 29(12): 211215-. |
[2] | 王怡捷, 钮东方, 张新胜. 电解乙酰基吡嗪废水中的硫酸铵制备过硫酸铵的研究[J]. 电化学(中英文), 2022, 28(4): 2106101-. |
[3] | 刘佩璇, 彭芦苇, 何瑞楠, 李露露, 乔锦丽. 一种用于电还原CO2生成甲酸的高性能连续流动式MEA反应器[J]. 电化学(中英文), 2022, 28(1): 2104231-. |
[4] | 屈乙行, 崔敏, 张聪, 李冲, 李鹏, 任聚杰. 利用离子膜电解法改进过硫酸铵生产研究[J]. 电化学(中英文), 2021, 27(5): 586-592. |
[5] | 郭浩, 钮东方, 胡硕真, 张新胜. 对-(β-羟乙基砜)苯胺的电化学合成[J]. 电化学(中英文), 2021, 27(5): 498-507. |
[6] | 张钰宁, 钮东方, 胡硕真, 张新胜. 基于纳米金属的增强效应在CO2电还原反应中的应用进展[J]. 电化学(中英文), 2020, 26(4): 495-509. |
[7] | 李二岭, 杨 发, 阮明波, 宋 平, 徐维林. Fe-N共掺杂纳米碳材料的形貌对电化学还原反应的影响[J]. 电化学(中英文), 2019, 25(4): 486-496. |
[8] | 高敦峰,阎程程,汪国雄,包信和. Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响[J]. 电化学(中英文), 2018, 24(6): 757-765. |
[9] | 张 瑞,吕伟欣,雷立旭. H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学(中英文), 2017, 23(1): 72-79. |
[10] | 赵 波, 姜 莉, 袁铭辉, 符显珠, 孙 蓉, 汪正平. 电化学法制备石墨烯及其复合材料[J]. 电化学(中英文), 2016, 22(1): 1-19. |
[11] | 杨瑞枝, Peter Strasser, Michael Toney. 电化学去合金化Pt(Pd)-Cu对氧的电催化还原活性的研究[J]. 电化学(中英文), 2012, 18(2): 141-146. |
[12] | 赵晨辰, 郭建伟, 王莉, 何向明, 王诚, 刘志祥. Sn/Cu电极电化学还原CO2的研究[J]. 电化学(中英文), 2012, 18(2): 169-173. |
[13] | 赖宇坤, 王炜, . 循环伏安法测定铁胺络合物还原强度[J]. 电化学(中英文), 2011, 17(1): 102-106. |
[14] | 樊俊丽, 叶伟林, 王荣, 徐立群, 吴霞琴, . 不同离子液体中硝基苯的电化学还原[J]. 电化学(中英文), 2009, 15(3): 260-263. |
[15] | 王胜, 雷瑛, 时康, . 电化学诱导聚合甲基丙烯酸膜及葡萄糖酶电极制备[J]. 电化学(中英文), 2009, 15(3): 255-259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||