电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 671-680. doi: 10.13208/j.electrochem.200724
袁会芳1, 张越1, 翟兴吾2, 胡立兵1, 葛桂贤2, 王刚1, 于锋1,3,*(), 代斌1,*()
收稿日期:
2020-07-24
修回日期:
2021-02-18
出版日期:
2021-12-28
发布日期:
2021-02-22
通讯作者:
于锋,代斌
E-mail:yufeng05@mail.ipc.ac.cn;db_tea@shzu.edu.cn
作者简介:
第一联系人:#两位作者对此文章贡献相同。
基金资助:
Hui-Fang Yuan1, Yue Zhang1, Xing-Wu Zhai2, Li-Bing Hu1, Gui-Xian Ge2, Gang Wang1, Feng Yu1,3,*(), Bin Dai1,*()
Received:
2020-07-24
Revised:
2021-02-18
Published:
2021-12-28
Online:
2021-02-22
Contact:
Feng Yu,Bin Dai
E-mail:yufeng05@mail.ipc.ac.cn;db_tea@shzu.edu.cn
摘要:
与贵金属铂基电化学氧还原反应(ORR)催化剂相比,廉价的非贵金属催化剂引起了广泛的关注。本文以壳聚糖作为一种富含氮和碳元素的生物质资源,利用碳浴法成功制备了氮掺杂碳原位负载铜纳米颗粒(Cu/N-C)催化剂。纯壳聚糖碳化得到的样品N-C的比表面积为67.5 m2·g-1、平均孔径0.14 nm、平均孔体积8.00 m2·g-1,与之相比,Cu/N-C比表面积可达607.3 m2·g-1、平均孔径为2.5 nm、平均孔体积为0.40 cm3·g-1。通过密度泛函理论(DFT)进行计算表明,Cu(111)/N-C的自由能值低于N-C,更有利于氧还原催化进行。在0.1 mol·L-1 KOH的介质中,Cu/N-C不仅表现出优异的起始和半波电势(分别为0.96 V和0.84 V),而且还表现出了优异的抗甲醇性能和稳定性,并且Cu元素掺杂量达到1.67wt.%。
袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680.
Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai. Copper Nanoparticles In-Situ Anchored on Nitrogen-Doped Carbon for High-Efficiency Oxygen Reduction Reaction Electrocatalyst[J]. Journal of Electrochemistry, 2021, 27(6): 671-680.
表2
Cu/N-C与其他合金催化剂的比表面积和催化活性比较。可逆氢电极;碱性溶液(0.1 mol·L-1 KOH);酸性溶液(0.1 mol·L-1 HClO4)
Catalyst | Surface area/ (m2·g-1) | Electrolyte | Onset potential/ V(vs. RHE) | Half-wave potential/ V(vs. RHE) | Ref. |
---|---|---|---|---|---|
PtNi/C | 489 | Alkaline | - | 0.88 | [ |
PtFe alloy | - | Alkaline | 0.95 | 0.88 | [ |
Fe0.3Co0.7/NC | 52 | Alkaline | 0.98 | 0.88 | [ |
CoFe alloy | 745 | Alkaline | -- | 0.89 | [ |
FeCo@NC-750 | 42 | Alkaline | 0.94 | 0.80 | [ |
FeNi@NCNTs | 104 | Alkaline | 0.95 | 0.77 | [ |
DBD- FeCo@NC | - | Alkaline | 0.96 | 0.88 | [ |
FeCo@PCNF-800 | 304.98 | Alkaline/acidic | 0.94/0.84 | 0.85/0.74 | [ |
FeNi-NC | 1864 | Alkaline | 0.98 | 0.83 | [ |
Cu/N-C | 607.3 | Alkaline | 0.96 | 0.84 | This work |
[1] |
Lu X F, Xia B Y, Zang S Q, Lou X W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2019, 59(12): 4634-4650.
doi: 10.1002/anie.v59.12 URL |
[2] |
Mamtani K, Jain D, Dogu D, Gustin V, Gunduz S, Co A C, Ozkan U S. Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media[J]. Appl. Catal. B - Environ., 2018, 220: 88-97.
doi: 10.1016/j.apcatb.2017.07.086 URL |
[3] |
Jia Q Y, Zhao Z P, Cao L, Li J K, Ghoshal S, Davies V, Stavitski E, Attenkofer K, Liu Z Y, Li M F, Duan X F, Mukerjee S, Mueller T, Huang Y. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles[J]. Nano Lett., 2018, 18(2): 798-804.
doi: 10.1021/acs.nanolett.7b04007 URL |
[4] |
Wang Y Q, Yu F, Zhu M Y, Ma C H, Zhao D, Wang C, Zhou A M, Dai B, Ji J Y, Guo X H. 3 N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(5): 2011-2017.
doi: 10.1039/C7TA08607E URL |
[5] |
Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y, Li Y D. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design[J]. Chem, 2019, 5(6): 1486-1511.
doi: 10.1016/j.chempr.2019.03.002 URL |
[6] |
Sun X, Atiyeh H K, Li M X, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review[J]. Bioresource Technol., 2020, 295: 122252.
doi: 10.1016/j.biortech.2019.122252 URL |
[7] |
Kim C, Dionigi F, Beermann V, Wang X L, Moller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2 RR)[J]. Adv. Mater., 2018, 31(SI): 1805617.
doi: 10.1002/adma.v31.31 URL |
[8] |
Chen M J, Hwang S, Li J Z, Karakalos S, Chen K, He Y H, Mukherjee S, Su D, Wu G. Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts[J]. Nanoscale, 2018, 10(36): 17318-17326.
doi: 10.1039/C8NR05888A URL |
[9] |
Wei Q L, Zhang G X, Yang X H, Chenitz R, Barham D, Yang L J, Ye S Y, Knights S, Sun S H. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl Mater. Inter., 2017, 9(42): 36944-36954.
doi: 10.1021/acsami.7b12666 URL |
[10] |
Asset T, Chattot R, Fontana M, Mercier-Guyon B, Job N, Dubau L, Maillard F. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles[J]. ChemPhysChem, 2018, 19(13): 1552-1567.
doi: 10.1002/cphc.v19.13 URL |
[11] | Yang H, Ko Y, Lee W, Zuttel A, Kim W. Nitrogen-doped carbon black supported Pt-M (M = Pd, Fe, Ni) alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Mater. Today Energy, 2019, 13: 374-381. |
[12] |
Zhang G R, Wollner S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions[J]. Appl. Catal. B - Environ., 2018, 222: 26-34.
doi: 10.1016/j.apcatb.2017.09.066 URL |
[13] |
Wang N N, Li Y Q, Guo Z L, Li H, Hayase S, Ma T L. Minute quantities of hexagonal nanoplates PtFe alloy with facile operating conditions enhanced electrocatalytic activity and durability for oxygen reduction reaction[J]. J. Alloy. Compd., 2018, 752: 23-31.
doi: 10.1016/j.jallcom.2018.04.181 URL |
[14] |
Yu F, Liu M C, Ma C H, Di L B, Dai B, Zhang L L. A review on the promising plasma-assisted preparation of Electrocatalysts[J]. Nanomaterials, 2019, 9(10): 1436.
doi: 10.3390/nano9101436 URL |
[15] |
Martinez U, Babu S K, Holby E F, Chung H T, Yin X, Zelenay P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Adv., Mater., 2019, 31(SI): 1806545.
doi: 10.1002/adma.v31.31 URL |
[16] |
Cai P W, Ci S Q, Zhang E H, Shao P, Cao C S, Wen Z H. FeCo alloy nanoparticles confined in carbon layers as high-activity and robust cathode catalyst for Zn-Air battery[J]. Electrochim. Acta, 2016, 220: 354-362.
doi: 10.1016/j.electacta.2016.10.070 URL |
[17] |
Zhao X T, Abbas S C, Huang Y Y, Lv J Q, Wu M X, Wang Y B. Robust and highly active FeNi@NCNT nanowire arrays as integrated air electrode for flexible solid-state rechargeable Zn-Air batteries[J]. Adv. Mater., Interfaces, 2018, 5(9): 1701448.
doi: 10.1002/admi.v5.9 URL |
[18] |
Guan B Y, Lu Y, Wang Y, Wu M H, Lou X W. Porous iron-cobalt alloy/nitrogen-doped carbon cages synthesized via pyrolysis of complex metal-organic framework hybrids for oxygen reduction[J]. Adv. Funct. Mater., 2018, 28(10): 1706738.
doi: 10.1002/adfm.v28.10 URL |
[19] |
Xiong Y, Yang Y, DiSalvo F J, Abruna H D. Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells[J]. J. Am. Chem. Soc., 2019, 141(27): 10744-10750.
doi: 10.1021/jacs.9b03561 pmid: 31246446 |
[20] |
Yin D D, Han C, Bo X J, Liu J, Guo L P. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions[J]. J. Colloid Interface Sci., 2019, 533: 578-587.
doi: 10.1016/j.jcis.2018.08.118 URL |
[21] |
Yan X Y, Tong X L, Zhang Y F, Han X D, Wang Y Y, Jin G Q, Qin Y, Guo X Y. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Chem. Commun., 2012, 48(13): 1892-1894.
doi: 10.1039/c2cc17537a URL |
[22] |
Cracknell J A, Vincent K A, Armstrong F A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis[J]. Chem. Rev., 2008, 108(7): 2439-2461.
doi: 10.1021/cr0680639 pmid: 18620369 |
[23] |
Solomon E I, Sundaram U M, Machonkin T E. Multicopper oxidases and oxygenases[J]. Chem. Rev., 1996, 96(7): 2563-2605.
pmid: 11848837 |
[24] |
Zhao Y Y, Chu Y, Ju X P, Zhao J S, Kong L Q, Zhang Y, Carbon-supported copper-based nitrogen-containing sup-ramolecule as an efficient oxygen reduction reaction catalyst in neutral medium[J]. Catalysts, 2018, 8(2): 53.
doi: 10.3390/catal8020053 URL |
[25] |
Pan Z F, An L, Zhao T S, Tang Z K. Advances and challenges in alkaline anion exchange membrane fuel cells[J]. Prog. Energy Combust. Sci., 2018, 66: 141-175.
doi: 10.1016/j.pecs.2018.01.001 URL |
[26] |
Kumar M N V R. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000, 46(1): 1-27.
doi: 10.1016/S1381-5148(00)00038-9 URL |
[27] |
Qu J, Hu Q L, Shen K, Zhang K, Li Y L, Li H, Zhang Q R, Wang J Q, Quan W Q. The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism[J]. Carbohyd. Res., 2011, 346(6): 822-827.
doi: 10.1016/j.carres.2011.02.006 URL |
[28] |
Wang L, Liu M C, Wang G, Dai B, Yu F, Zhang J L. An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance[J]. J. Alloy. Compd., 2019, 776: 43-51.
doi: 10.1016/j.jallcom.2018.10.214 URL |
[29] | Liu M C, Guo X H, Hu L B, Yuan H F, Wang G, Dai B, Zhang L L, Yu F. Fe3O4/Fe3C@nitrogen-doped carbon for enhancing oxygen reduction reaction[J]. ChemNanoMat, 2018, 5(2): 187-193. |
[30] |
Yu H Y, Fisher A, Cheng D J, Cao D P. Cu,N-codoped hierarchical porous carbons as electrocatalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016, 8(33): 21431-21439.
doi: 10.1021/acsami.6b04189 URL |
[31] |
Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chem. Soc. Rev., 2015, 44(8): 2168-2201.
doi: 10.1039/C4CS00484A URL |
[32] |
Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365.
doi: 10.1126/science.aad0832 URL |
[33] |
Borghei M, Lehtonen J, Liu L, Rojas O J. Advanced bio-mass-derived electrocatalysts for the oxygen reduction reaction[J]. Adv. Mater., 2018, 30(24): 1703691.
doi: 10.1002/adma.v30.24 URL |
[34] | Yang L, Zeng X F, Wang D, Cao D P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery[J]. Energy Stor. Mater., 2018, 12: 277-283. |
[35] |
Rinaudo M. Chitin and chitosan: Properties and applications[J]. Prog. Polym. Sci., 2006, 31(7): 603-632.
doi: 10.1016/j.progpolymsci.2006.06.001 URL |
[36] |
Huang C L, Zhang H Y, Sun Z Y, Liu Z M. Chitosan-mediated synjournal of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane[J]. Sci. China. Chem., 2010, 53(7): 1502-1508.
doi: 10.1007/s11426-010-4004-1 URL |
[37] |
Guibal E. Heterogeneous catalysis on chitosan-based materials: a review[J]. Prog. Polym. Sci., 2005, 30(1): 71-109.
doi: 10.1016/j.progpolymsci.2004.12.001 URL |
[38] |
Huang J Y, Liang Y R, Hu H, Liu S M, Cai Y J, Dong H W, Zheng M T, Xiao Y, Liu Y L. Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synjournal and its application in superior supercapacitors[J]. J. Mater. Chem. A, 2017, 5(47): 24775-24781.
doi: 10.1039/C7TA08046H URL |
[39] |
Hu L B, Wei Z X, Yu F, Yuan H F, Liu M C, Wang G, Peng B H, Dai B, Ma J M. Defective ZnS nanoparticles anchored in situ on N-doped carbon as a superior oxygen reduction reaction catalyst[J] J. Energy. Chem., 2019, 39: 152-159.
doi: 10.1016/j.jechem.2019.01.018 URL |
[1] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[4] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[5] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[6] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
[7] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[8] | 马恩辉, 刘旭坡, 申涛, 王得丽. 醇盐自模板法构筑碳封装NiFeV基电催化剂用于析氧反应[J]. 电化学(中英文), 2023, 29(11): 211103-. |
[9] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[10] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[11] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[12] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[13] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[14] | 崔爱林, 白洋, 俞宏英, 孟惠民. Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应[J]. 电化学(中英文), 2022, 28(5): 2110021-. |
[15] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||