[1] |
Shu J, Qiu Z L, Zhou Q, Lin Y X, Lu M H, Tang D P. Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter[J]. Anal. Chem., 2016, 88(5): 2958-2966.
doi: 10.1021/acs.analchem.6b00262
URL
|
[2] |
Li Y, Zhang N, Zhao W W, Jiang D C, Xu J J, Chen H Y. Polymer dots for photoelectrochemical bioanalysis[J]. Anal. Chem., 2017, 89(9): 4945-4950.
doi: 10.1021/acs.analchem.7b00162
URL
|
[3] |
Zhao C Q, Ding S N, Xu J J, Chen H Y. ZnAgInS quantum dot-decorated BiOI heterostructure for cathodic photoelectrochemical bioanalysis of glucose oxidase[J]. ACS Appl. Nano Mater., 2020, 3(11): 11489-11496.
doi: 10.1021/acsanm.0c02592
URL
|
[4] |
Yan K, Liu Y, Yang Y H, Zhang J D. A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline[J]. Anal. Chem., 2015, 87(24): 12215-12220.
doi: 10.1021/acs.analchem.5b03139
URL
|
[5] |
Wu S, Song H L, Song J, He C, Ni J, Zhao Y Q, Wang X Y. Development of triphenylamine functional dye for selective photoelectrochemical sensing of cysteine[J]. Anal. Chem., 2014, 86(12): 5922-5928.
doi: 10.1021/ac500790u
URL
|
[6] |
Li Z P, Dong W X, Du X Y, Wen G M, Fan X J. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+[J]. Microchem. J., 2020, 152: 104259.
doi: 10.1016/j.microc.2019.104259
URL
|
[7] |
Yu S Y, Zhang L, Zhu L B, Gao Y, Fan G C, Han D M, Chen G X, Zhao W W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing[J]. Coord. Chem. Rev., 2019, 393: 9-20.
doi: 10.1016/j.ccr.2019.05.008
URL
|
[8] |
Gao C M, Xue J, Zhang L, Cui K, Li H, Yu J H. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4NbO8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation[J]. Anal. Chem., 2018, 90(24): 14116-14120.
doi: 10.1021/acs.analchem.8b04662
URL
|
[9] |
Hao Q, Wang P, Ma X Y, Su M Q, Lei J P, Ju H X. Charge recombination suppression-based photoelectrochemical strategy for detection of dopamine[J]. Electrochem. Commun., 2012, 21: 39-41.
doi: 10.1016/j.elecom.2012.05.009
URL
|
[10] |
Cooper D R, Suffern D, Carlini L, Clarke S J, Parbhoo R, Bradforth S E, Nadeau J L. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates[J]. Phys. Chem. Chem. Phys., 2009, 11(21): 4298-4310.
doi: 10.1039/b820602c
URL
|
[11] |
Deria P, Gómez-Gualdrón D A, Hod I, Snurr R MQ, Hupp J T, Farha O K. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs[J]. J. Am. Chem. Soc., 2016, 138(43): 14449-14457.
doi: 10.1021/jacs.6b09113
URL
|
[12] |
Chen J, Chen H Y, Wang T S, Li J F, Wang J, Lu X Q. Copper ion fluorescent probe based on Zr-MOFs composite material[J]. Anal. Chem., 2019, 91(7): 4331-4336.
doi: 10.1021/acs.analchem.8b03924
URL
|
[13] |
Wang J H, Li M N, Yan S, Zhang Y, Liang C C, Zhang X M, Zhang Y B. Modulator-induced Zr-MOFs diversification and investigation of their properties in gas sorption and Fe3+ ion sensing[J]. Inorg. Chem., 2020, 59(5): 2961-2968.
doi: 10.1021/acs.inorgchem.9b03316
URL
|
[14] |
Gao Y, Wu J F, Wang J Q, Fan Y X, Zhang S Y, Dai W. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline[J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 11036-11044.
doi: 10.1021/acsami.9b23314
URL
|
[15] |
Xu G L, Zhang H B, Wei J, Zhang H X, Wu X, Li Y, Li C S, Zhang J, Ye J H. Integrating the g-C3N4 nanosheet with B-H bonding decorated metal-organic framework for CO2 activation and photoreduction[J]. ACS Nano, 2018, 12(6): 5333-5340.
doi: 10.1021/acsnano.8b00110
URL
|
[16] |
Zhang G Y, Zhuang Y H, Shan D, Su G F, Cosnier S, Zhang X J. Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection[J]. Anal. Chem., 2016, 88(22): 11207-11212.
doi: 10.1021/acs.analchem.6b03484
URL
|
[17] |
Zhu Y H, Xu Z W, Yan K, Zhao H B, Zhang J D. One-step synjournal of CuO-Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine[J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40452-40460.
doi: 10.1021/acsami.7b13020
URL
|
[18] |
Michael J, MacCoss N K. Measurement of homocysteine concentrations and stable isotope tracer enrichments in human plasma[J]. Anal. Chem., 1999, 71(20): 4527-4533.
pmid: 10546531
|
[19] |
Wang Y Q, Wang W, Wang S S, Chu W J, Wei T, Tao H J, Zhang C X, Sun Y M. Enhanced photoelectrochemical detection of L-cysteine based on the ultrathin polythiophene layer sensitized anatase TiO2 on F-doped tin oxide substrates[J]. Sensor. Actuat. B - Chem., 2016, 232: 448-453.
doi: 10.1016/j.snb.2016.03.161
URL
|
[20] |
Hubmacher D, Sabatier L, Annis D S, Mosher D F, Reinhardt D P. Homocysteine modifies structural and functional properties of fibronectin and interferes with the fibronectin-fibrillin-1 interaction[J]. Biochem., 2011, 50(23): 5322-5332.
|
[21] |
Ozoemena K, Westbroek P, Nyokong T. Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards L-cysteine detection[J]. Electrochem. Commun., 2001, 3(9): 529-534.
doi: 10.1016/S1388-2481(01)00213-2
URL
|
[22] |
Magdalena S, Anthony A M, Agata C, Maria H. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon[J]. Anal. Chem., 2012, 84(11): 4970-4978.
doi: 10.1021/ac300632u
pmid: 22524145
|
[23] |
Gates A T, Fakayode S O, Lowry M, Ganea G M, Murugeshu A, Robinson J W, Strongin R M, Warner I M. Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification[J]. Langmuir, 2008, 24(8): 4107-4113.
doi: 10.1021/la7033142
URL
|
[24] |
Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging[J]. J. Am. Chem. Soc., 2007, 129(34): 10322-10323.
pmid: 17672463
|
[25] |
Chen H L, Zhao Q, Wu Y B, Li F Y, Yang H, Yi T, Huang C H. Selective phosphorescence chemosensor for homocysteine based on an iridium(III) complex[J]. Inorg. Chem., 2007, 46(26): 11075-11081.
doi: 10.1021/ic7010887
URL
|
[26] |
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10307-10310.
doi: 10.1002/anie.201204475
URL
|
[27] |
Bonnett B L, Smith E D, Cai M, Haag J V, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765-15773.
doi: 10.1021/acsami.0c04349
URL
|
[28] |
Carrasco S, Sanz-Marco A, Matute B M. Fast and robust synjournal of metalated PCN-222 and their catalytic performance in cycloaddition reactions with CO2[J]. Organo-metallics, 2019, 38(18): 3429-3435.
|
[29] |
Tan W L, Wei T, Huo J, Loubidi M, Liu T T, Liang Y, Deng L B. Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acidstable catalytic performance[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 36782-36788.
doi: 10.1021/acsami.9b13080
URL
|
[30] |
Chen S, Tian J N, Jiang Y X, Zhao Y C, Zhang J N, Zhao S L. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system[J]. Anal. Chim. Acta, 2013, 787: 181-188.
doi: 10.1016/j.aca.2013.05.048
URL
|
[31] |
Beitollahi H, Zaimbashi R, Mahani M T, Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles[J]. Bioelectrochemistry, 2020, 134: 107497.
doi: S1567-5394(18)30608-X
pmid: 32222669
|
[32] |
Tang L J, Shi J Z, Huang Z L, Yan X M, Zhang Q, Zhong K L, Hou S H, Bian Y J. An ESIPT-based fluorescent probe for selective detection of homocysteine and its application in live-cell imaging[J]. Tetrahedron Lett., 2016, 57(47): 5227-5231.
|