电化学(中英文) ›› 2021, Vol. 27 ›› Issue (4): 396-404. doi: 10.13208/j.electrochem.200614
刘双娟1, 王海静2,*(), 郭靖1,*(), 王鹏程2, 周昊1, 孟才2, 郭汉杰1
收稿日期:
2020-06-13
修回日期:
2020-07-20
出版日期:
2021-08-28
发布日期:
2020-09-23
通讯作者:
王海静,郭靖
E-mail:wanghaijing@ihep.ac.cn;guojing@ustb.edu.cn
基金资助:
Shuang-Juan Liu1, Hai-Jing Wang2,*(), Jing Guo1,*(), Peng-Cheng Wang2, Hao Zhou1, Cai Meng2, Han-Jie Guo1
Received:
2020-06-13
Revised:
2020-07-20
Published:
2021-08-28
Online:
2020-09-23
Contact:
Hai-Jing Wang,Jing Guo
E-mail:wanghaijing@ihep.ac.cn;guojing@ustb.edu.cn
摘要:
石墨烯纸具有优良的导电导热性能,但强度和硬度较低。为了获得良好的综合力学性能以提高石墨烯纸的实用价值,本文提出了制备石墨烯纸-金属复合材料的构想,从实验上初步研究了电沉积法制备石墨烯纸-金属复合材料的可行性,并探究了石墨烯纸与电沉积金属界面结合情况。采用两种常见镀层金属Cu、Cr,在实验室使用电沉积法制备了石墨烯纸-Cu,石墨烯纸-Cr两种复合镀层材料。利用扫描电镜对复合材料的表面形貌和横截面进行了表征,结果显示石墨烯纸-Cr复合材料的界面结合相对紧密。本文首次将二维错配度应用到石墨烯纸与金属镀层界面结合力分析中,通过计算分析,常温下C 的(0001)面与Cr的(110)面的二维错配度为7.26%,晶格匹配度良好. 随温度升高,C-Cr界面错配度值减小,即晶格匹配度增加,另外C-Cr二元相图显示C与Cr发生反应生成的碳化物将进一步增强其界面结合。
刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404.
Shuang-Juan Liu, Hai-Jing Wang, Jing Guo, Peng-Cheng Wang, Hao Zhou, Cai Meng, Han-Jie Guo. A Preliminary Study on Graphene Film-Metal Composites Prepared by Electrodeposition[J]. Journal of Electrochemistry, 2021, 27(4): 396-404.
表1
电沉积实验参数
Experiment type | Concentration of main bath components/(g·L-1) | Current density/ (mA·cm-2) | Bath temperature/℃ | Deposition time/h |
---|---|---|---|---|
Electrodeposited copper | Triethanolamine 12 Glycerol 20 Tetramethylammonium chloride 45 CH3OH 205, CuSO4·5H2O 50 | 12.5 | 35 | 24 |
Electrodeposited chromium | CrCl3·6H2O 107 HCOONH4 50, NH4Cl 100 NaCl 200, H3BO3 40 KBr 12 PEG400 4 | 150 | 30 | 1 |
表4
25 ℃下石墨烯纸与铜、铬界面错配度计算
Matching interface | (0001)C//(100)Cu | (0001)C//(110)Cu | (0001)C//(111)Cu | ||||||
---|---|---|---|---|---|---|---|---|---|
(hkl)C | [20] | [100] | [110] | [20] | [100] | [110] | [20] | [100] | [110] |
(hkl)Cu | [010] | [031] | [011] | [001] | [12 ] | [10] | [01] | [11] | [10] |
dC/nm | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 |
dCu/nm | 0.5112 | 0.8083 | 0.3615 | 0.5112 | 0. 261 | 0.3615 | 0.3615 | 0.6261 | 0.3615 |
θ/(°) | 0 | 11.56 | 15 | 0 | 4.89 | 30 | 0 | 0 | 0 |
dCcosθ | 0.2461 | 0.4177 | 0.2377 | 0.2461 | 0.4247 | 0.2131 | 0.2461 | 0.4263 | 0.2461 |
δ/% | 44.81 | 41.69 | 31.92 | ||||||
Matching interface | (0001)C//(100)Cr | (0001)C//(110)Cr | (0001)C//(111)Cr | ||||||
(hkl)C | [20] | [110] | [00] | [20] | [110] | [00] | [20] | [100] | [110] |
(hkl)Cr | [010] | [011] | [001] | [001] | [11] | [10] | [10] | [21] | [011] |
dC/nm | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.2461 | 0.4263 | 0.2461 | 0.4263 | 0.2461 |
dCr/nm | 0.2910 | 0.4115 | 0.2910 | 0.2910 | 0.2520 | 0.4115 | 0.4115 | 0.7128 | 0.4115 |
θ/(°) | 0 | 15 | 0 | 0 | 5.26 | 0 | 0 | 0 | 0 |
dCcosθ | 0.2461 | 0.2377 | 0.4263 | 0.2461 | 0.2451 | 0.4263 | 0.2461 | 0.4263 | 0.2461 |
δ/% | 34.72 | 7.26 | 40.19 |
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
doi: 10.1126/science.1102896 URL |
[2] |
Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
doi: 10.1126/science.1157996 URL |
[3] |
Wang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Room-temperature ferromagnetism of graphene[J]. Nano Lett., 2009, 9(1): 220-224.
doi: 10.1021/nl802810g URL |
[4] |
Yagi Y, Briere T M, Sluiter M H F, Kumar V, Farajian A A, Kawazoe Y. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study[J]. Phys. Rev. B, 2004, 69(7): 075414.
doi: 10.1103/PhysRevB.69.075414 URL |
[5] | Zhao Z Z(赵真真), Ni W B(倪文彬), Gao N Y(高能越), Wang H B(王洪波), Zhao J W(赵健伟). Effects of graphene on the electrochemical behaviors of Ni(OH)2 as supercapacitor material[J]. J. Electrochem.(电化学), 2011, 17(3): 292-299. |
[6] |
Hang L F, Zhao Y, Zhang H H, Liu G Q, Cai W P, Li Y, Qu L T. Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance[J]. Acta Mater., 2016, 105: 59-67.
doi: 10.1016/j.actamat.2015.12.029 URL |
[7] |
Huang G, Wang H, Cheng P, Wang H Y, Sun B, Sun S, Zhang C C, Chen M M, Ding G F. Preparation and characterization of the graphene-Cu composite film by electrodeposition process[J]. Microelectron. Eng., 2016, 157: 7-12.
doi: 10.1016/j.mee.2016.02.006 URL |
[8] | Hou Y C(侯永超), Huang L J(黄林军), Wang Y X(王彦欣), Tang J G(唐建国), Liu J X(刘继宪), Wang Y(王瑶), Jiao J Q(焦吉庆), Wang W(王薇), Zhao Y C(赵运超). Preparation of graphene/silver hybrid materials and research of Raman enhanced performance[J]. Appl. Chem. Ind.(应用化工), 2016, 45(5): 806-809. |
[9] | Zhao Y R(赵亚茹), Li Y(李勇), Li H(李焕). Research progress of graphene reinforced copper matrix composites[J]. Surf. Technol.(表面技术), 2016, 45(5): 33-40. |
[10] |
Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv. Mater., 2012, 24(30): 4144-4150.
doi: 10.1002/adma.201200197 URL |
[11] |
Pham V H, Cuong T V, Hur S H, Shin, E W, Chung J S, Kim E J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
doi: 10.1016/j.carbon.2010.01.062 URL |
[12] | Shuai X R(帅骁睿), Yang S L(杨仕玲), Yang H C(杨化超), Wu S H(吴声豪), Duan L P(段良平). Research on the penetration an electrochemical energy storage of graphene paper electrode for supercapacitor[J]. NCM(化工新型材料), 2019, 47(1): 124-127. |
[13] |
Gwon H, Kim H, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Flexible energy storage devices based on graphene paper[J]. Energy Environ. Sci., 2011, 4(4): 1277-1283.
doi: 10.1039/c0ee00640h URL |
[14] |
Dai Y, Cai S D, Yang W J, Gao L, Tang W P, Xie J Y, Zhi J, Ju X M. Fabrication of self-binding noble metal/flexible graphene composite paper[J]. Carbon, 2012, 50(12): 4648-4654.
doi: 10.1016/j.carbon.2012.05.053 URL |
[15] | Zan X. Flexible electrochemical biosensors based on interfacially assembled metal nanocrystals and graphene paper[D]. Singapore: Nanyang Technological University, 2016. |
[16] |
Wang Z, Mao B Y, Wang Q L, Yu J, Dai J X, Song R G, Pu Z H, He D P, Wu Z, Mu S C. Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness[J]. Small, 2018, 14(20): 1704332.
doi: 10.1002/smll.v14.20 URL |
[17] | Kirihata K, Arai S, Uejima M, Hirota M. Fabrication of copper/single-walled carbon nanotube composite plating films by electrodeposition[J]. J. Radiol., 2015, 89(10): 1450. |
[18] |
Danilov F I, Protsenko V S, Gordiienko V O, Kwon S C, Lee J Y, Kim M. Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits[J]. Appl. Surf. Sci., 2011, 257(18): 8048-8053.
doi: 10.1016/j.apsusc.2011.04.095 URL |
[19] | Cheng T(程韬), Jia J G(贾建刚), Ma Q(马勤), Ji G S(季根顺), Guo T M(郭铁明). Deposition of homogeneous copper layer on short carbon fibers using electrochemical method[J]. T. Mater. Heat Treat., 2014, 35(9): 167-171. |
[20] |
Gao H C, Wang Y X, Xiao F, Ching C B, Duan H W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells[J]. J. Phys. Chem. C, 2012, 116(14): 7719-7725.
doi: 10.1021/jp3021276 URL |
[21] | Wang P(王鹏), Li C R(李长荣), Liu R(刘然), Shi S(师帅). Calculation of disregistry degree of ε-Cu precipitation induced by rare earth inclusion in steel[J]. J. Chin. Soc. Rear Earth.(中国稀土学报), 2018, 36(3): 314-318. |
[22] | Song Q(宋琴), Wu J W(武俊伟), Zhang H(张辉), Du C W(杜翠薇). Performance of Ti-based dimensionally stable anode for chromium plating application[J]. J. Chin. Soc. Corros. Prot.(中国腐蚀与防护学报), 2013, 33(6): 507-514. |
[23] |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metall. Trans., 1970, 1(7): 1987-1995.
doi: 10.1007/BF02642799 URL |
[24] | Shi R X(师瑞霞), Yang R C(杨瑞成), Zhou C H(周春华), Yin Y S(尹衍升), Ma L P(马来鹏). The relationship between lattice constants and temperature in EET[J]. J. Shanghai. Univ. -Eng. Sci.(山东大学学报: 工学版), 2004, 34(5): 5-8,98. |
[25] |
Gómez M A, Romero J, Lousa A, Esteve J. Tribological performance of chromium/chromium carbide multilayers deposited by r.f. magnetron sputtering[J]. Surf. Coat. Technol., 2005, 200(5-6): 1819-1824.
doi: 10.1016/j.surfcoat.2005.08.060 URL |
[26] |
Qin Z B, Luo Q, Zhang Q, Wu Z, Liu L, Shen B, Hu W B. Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation[J]. Surf. Coat. Technol., 2018, 334: 402-409.
doi: 10.1016/j.surfcoat.2017.11.066 URL |
[27] | Cao T C(曹天赐). Research on the performance and mechanism of lithium metal-graphene paper composite anode[D]. Beijing: Beijing University of Technology, 2019. |
[28] | Yu Y N(余永宁). Materials science[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 777-781. |
[29] | Chen W R(陈蔚然). Crystal structure of graphite[J]. Carbon Tech.(炭素技术), 1990, 4: 39-40. |
[30] | Zhang H H(张恒华). Metal binary system phase diagram manual[J]. Heat Treat.(热处理), 2010, 25(1): 78. |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[3] | 王玉玺, 高丽茵, 万永强, 李哲, 刘志权. 应用于大马士革工艺的纳米孪晶铜脉冲电沉积研究[J]. 电化学(中英文), 2023, 29(8): 2209231-. |
[4] | 翟悦晖, 彭逸霄, 洪延, 陈苑明, 周国云, 何为, 王朋举, 陈先明, 王翀. 铜互连电镀中有机添加剂的合成与分析[J]. 电化学(中英文), 2023, 29(8): 2208111-. |
[5] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[6] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[7] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[8] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[9] | 黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006-. |
[10] | 王小丽, 何为, 陈先明, 曾红, 苏元章, 王翀, 李高升, 黄本霞, 冯磊, 黄高, 陈苑明. PCB酸性蚀刻液中缓蚀剂对厚铜线路制作的影响[J]. 电化学(中英文), 2022, 28(7): 2213007-. |
[11] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[12] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[13] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[14] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[15] | 魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||