电化学(中英文) ›› 2022, Vol. 28 ›› Issue (7): 2213002. doi: 10.13208/j.electrochem.2213002
所属专题: “电子电镀和腐蚀”专题文章
收稿日期:
2022-04-02
修回日期:
2022-05-07
出版日期:
2022-07-28
发布日期:
2022-05-20
Yu Shen, Bing-Bing Li, Yi Ma, Zeng-Lin Wang*()
Received:
2022-04-02
Revised:
2022-05-07
Published:
2022-07-28
Online:
2022-05-20
Contact:
* (86-29)81530761, E-mail: wangzl@snnu.edu.cn
摘要:
随着半导体集成度的不断提高,铜互连线的电阻率迅速提高。当互连线宽度接近7 nm时,铜互连线的电阻率与钴接近。IBM和美国半导体公司(ASE)已经使用金属钴取代铜作为下一代互连线材料。然而,钴种子层的形成和超级电镀钴填充7 nm微孔的技术工艺仍是一个很大的挑战。化学镀是在绝缘体表面形成金属种子层的一种非常简单的方法, 通过超级化学镀填充方式, 直径为几纳米的盲孔可以无空洞和无缝隙的方式完全填充。本文综述了化学镀钴的研究进展,并分析了还原剂种类对化学镀钴沉积速率和镀膜质量的影响。同时, 在长期从事超级化学填充研究的基础上, 作者提出了通过超级化学镀钴技术填充7 nm以及一下微盲孔的钴互连线工艺。
沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002.
Yu Shen, Bing-Bing Li, Yi Ma, Zeng-Lin Wang. Research Progress in Electroless Cobalt Plating and the Bottom-up Filling of Electroless Plating[J]. Journal of Electrochemistry, 2022, 28(7): 2213002.
[1] | Beyne S, Dutta S, Pedreira O V, Bosman N, Adelmann C, De Wolf I, Tokei Z, Croes K. The first observation of p-type electromigration failure in full ruthenium interconnects[C]. Beyne S, IEEE International Reliability Physics Symposium, USA: IEEE, 2018. |
[2] |
Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6): 499-537.
doi: 10.1080/00018730110102187 URL |
[3] | Mont F W, Zhang X Y, Wang W, Kelly J J, Standaert T E, Quon R, Ryan E T. Cobalt interconnect on same copper barrier process integration at the 7 nm node[C]. Mont F W, 2017 IEEE International Interconnect Technology Conference (IITC), USA: IEEE, 2017. |
[4] |
Wen D W, Kuwahara H, Kato H, Kobayashi M, Sato Y, Masaki T, Kakihana M. Anomalous orange light-emitting (Sr,Ba)2SiO4: Eu2+ phosphors for warm white LEDs[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11615-11620.
doi: 10.1021/acsami.6b02237 URL |
[5] |
Webb E, Witt C, Andryuschenko T, Reid J. Integration of thin electroless copper films in copper interconnect metallization[J]. J. Appl. Electrochem., 2004, 34(3): 291-300.
doi: 10.1023/B:JACH.0000015618.02583.f7 URL |
[6] |
Ni X R, Chen Y M, Jin X F, Wang C, Huang Y Z, Hong Y, Su X H, Zhou G Y, Wang S X, He W, Chen Q G. Investigation of polyvinylpyrrolidone as an inhibitor for trench super-filling of cobalt electrodeposition[J]. J. Taiwan Inst. Chem. Eng., 2020, 112: 232-239.
doi: 10.1016/j.jtice.2020.06.010 URL |
[7] | Buckalew B, Oberst J, Ponnuswamy T. Electrodeposited cobalt for advanced packaging applications[C]. Buckalew, 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), USA: IEEE, 2017. |
[8] |
Kongstein O E, Haarberg G M, Thonstad J. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature[J]. J. Appl. Electrochem., 2007, 37(6): 669-674.
doi: 10.1007/s10800-007-9299-z URL |
[9] |
Pearlstein F, Weightman R F. Electroless cobalt deposition from acid baths[J]. J. Electrochem. Soc., 1974, 121: 1023-1023.
doi: 10.1149/1.2401971 URL |
[10] |
Frieze A S, Sard R, Weil R. Some properties of electroless cobalt[J]. J. Electrochem. Soc., 1968, 115: 586-586.
doi: 10.1149/1.2411348 URL |
[11] |
Khan M R, Lee J I. Comparison of plated Co-P and sputtered Co-Re as recording media based on nucleation, growth, structure, and magnetics[J]. J. Appl. Phys., 1985, 57(8): 4028-4030.
doi: 10.1063/1.334660 URL |
[12] | Hwang B J, Lin S H. Reaction mechanism of electroless deposition: Observations of morphology evolution during nucleation and growth via tapping mode AFM[J]. J. Ele-ctrochem. Soc., 1995, 142(11): 3749-3754. |
[13] |
Liu W L, Hsieh S H, Tsai T K, Chen W J. Growth kinetics of electroless cobalt deposition by TEM[J]. J. Electro-chem. Soc., 2004, 151(10): C680-C683.
doi: 10.1149/1.1793691 URL |
[14] |
Yu Y D, Song Z L, Ge H L, Wei G Y. Preparation of CoP films by ultrasonic electroless deposition at low initial temperature[J]. Prog. Nat. Sci., 2014, 24(3): 232-238.
doi: 10.1016/j.pnsc.2014.04.004 URL |
[15] |
Magagnin L, Sirtori V, Seregni S, Origo A, Gavallotti P L. Electroless Co-P for diffusion barrier in Pb-free soldering[J]. Electrochim. Acta, 2005, 50(23): 4621-4625.
doi: 10.1016/j.electacta.2004.10.098 URL |
[16] |
Chang Y H, Lin C C, Hung M P, Chin T S. The microstructure and magnetic properties of electroless-plated Co-B thin films[J]. J. Electrochem. Soc., 1986, 133(5): 985-988.
doi: 10.1149/1.2108782 URL |
[17] | Deng B, Wu Y C, Zhang Y, Yang Y, Li G H. Study of electroless plating process for cobalt-boron alloy and its properties(I)[J]. Electroplating & Finishing, 2001, (1): 12-15. |
[18] | Yang Y, Wu Y C, Qiao Y, Zhang Y, Deng B, Li G H. Study of electroless plating process for cobalt-boron alloy and its properties(II)[J]. Electroplating & Finishing, 2001, (2): 5-7+21. |
[19] | Shipley C R. Historical highlights of electroless plating[J]. Plat. Surf. Finish., 1984, 71(6): 92-99. |
[20] | Li N. Practical technology of electroless plating[M]. China: Chemical Industry Press, 2012: 45. |
[21] | Saito T, Sato E, Matsuoka M, Iwakura C. Electroless deposition of Ni-B, Co-B and Ni-Co-B alloys using dimet-hylamineborane as a reducing agent[J]. J. Appl. Electro-chem., 1998, 28(5): 559-563. |
[22] |
Shacham-Diamand Y, Sverdlov Y, Bogush V, Ofek-Alomg R. A surface adsorption model for electroless cobalt alloy thin films[J]. J. Solid State Electrochem., 2007, 11(7): 929-938.
doi: 10.1007/s10008-007-0285-5 URL |
[23] |
Stankeviciene I, Jagminiene A, Tamasauskaite-Tamasiunaite L, Sukackiene Z, Gedvilas M, Norkus E. Investigation of electroless deposition of cobalt films by EQCM in the presence of different amines[J]. Mater Sci. Eng. B-Adv. Funct. Solid-State Mater., 2019, 241: 9-12.
doi: 10.1016/j.mseb.2019.02.004 URL |
[24] |
Zyulkov I, Armini S, Opsomer K, Detavernier C, De Gendt S. Selective electroless deposition of cobalt using amino-terminated SAMs[J]. J. Mater. Chem. C, 2019, 7(15): 4392-4402.
doi: 10.1039/c9tc00145j |
[25] |
Chang S Y, Wan C C, Wang Y Y, Shih C H, Tsai M H, Shue S L, Yu C H, Liang M S. Characterization of Pd-free electroless Co-based cap selectively deposited on Cu surface via borane-based reducing agent[J]. Thin Solid Films, 2006, 515(3): 1107-1111.
doi: 10.1016/j.tsf.2006.07.044 URL |
[26] |
Cheng S L, Hsu T L, Lee T, Lee S W, Hu J C, Chen L T. Characterization and kinetic investigation of electroless deposition of pure cobalt thin films on silicon substrates[J]. Appl. Surf. Sci., 2013, 264: 732-736.
doi: 10.1016/j.apsusc.2012.10.111 URL |
[27] |
Yagi S, Kawamori M, Matsubara E. Electrochemical QCM study of the synthesis process of cobalt nanoparticles via electroless deposition[J]. Electrochem. Solid State Lett., 2010, 13(2): E1-E3.
doi: 10.1149/1.3269051 URL |
[28] |
Djokic S S. Electroless deposition of cobalt using hydrazine as a reducing agent[J]. J. Electrochem. Soc., 1997, 144(7): 2358-2363.
doi: 10.1149/1.1837818 URL |
[29] |
Ohno I, Wakabayashi O, Haruyama S. Anodic oxidation of reductants in electroless plating[J]. J. Electrochem. Soc., 1985, 132(10): 2323-2330.
doi: 10.1149/1.2113572 URL |
[30] |
Kim T Y, Lee M H, Byun J, Jeon H, Choe S, Kim J J. Influence of reducing agent on chemical decomposition of bis(3-sulfopropyl) disulfide (SPS) in Cu Plating bath[J]. J. Electrochem. Soc., 2021, 168(3): 032501.
doi: 10.1149/1945-7111/abe727 URL |
[31] |
Lee M H, Kim M J, Kim J J. Competitive adsorption between bromide ions and bis(3-Sulfopropyl)-disulfide for Cu microvia filling[J]. Electrochim. Acta, 2021, 370: 137707.
doi: 10.1016/j.electacta.2020.137707 URL |
[32] | Shingubara S, Wang Z L, Yaegashi O, Obata R, Sakaue H, Takahagi T. Bottom-up fill of copper in high aspect ratio via holes by electroless plating[C]. Shingubara S, Proceedings of IEEE International Electron Devices Meeting, USA: IEEE, 2003. |
[33] |
Shingubara S, Wang Z L, Yaegashi O, Obata R, Sakaue H, Takahagi T. Bottom-up fill of copper in deep submicrometer holes by electroless plating[J]. Electrochem. Solid State Lett., 2004, 7(6): C78-C80.
doi: 10.1149/1.1707029 URL |
[34] |
Wang Z L, Yaegashi O, Sakaue H, Takahagi T, Shingubara S. Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating[J]. J. Electrochem. Soc., 2004, 151(12): C781-C785.
doi: 10.1149/1.1810453 URL |
[35] |
Wang Z L, Yaegashi O, Sakaue H, Takahagi T, Shingubara S. Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating[J]. J. Appl. Phys., 2003, 94(7): 4697-4701.
doi: 10.1063/1.1609644 URL |
[36] |
Lee C H, Lee S C, Kim J J. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochim. Acta, 2005, 50(16-17): 3563-3568.
doi: 10.1016/j.electacta.2005.01.009 URL |
[37] |
Hasegawa M, Yamachika N, Shacham-Diamand Y, Okinaka Y, Osaka T. Evidence for “superfilling” of submicrometer trenches with electroless copper deposit[J]. Appl. Phys. Lett., 2007, 90(10): 101916.
doi: 10.1063/1.2712505 URL |
[38] |
Wang X. Bottom-up filling in electroless plating with an addition of JGB-RPE[J]. Russ. J. Electrochem., 2014, 50(5): 438-443.
doi: 10.1134/S1023193514050103 URL |
[39] |
Yang Z F, Li N, Wang X, Wang Z X, Wang Z L. Bottom-up filling in electroless plating with an addition of PEG-PPG triblock copolymers[J]. Electrochem. Solid State Lett., 2010, 13(7): D47-D49.
doi: 10.1149/1.3388488 URL |
[40] |
Wang X, Yang Z F, Wang Z L. Effect of additive triblock copolymer PEP-3100 on bottom-up filling in electroless copper plating[J]. Russ. J. Electrochem., 2012, 48(1): 99-103.
doi: 10.1134/S1023193511120135 URL |
[41] |
Hasegawa M, Okinaka Y, Shachm-Diamand Y, Osaka T. Void-free trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives[J]. Electrochem. Solid-State Lett., 2006, 9(8): C138-C140.
doi: 10.1149/1.2206008 URL |
[42] |
Hasegawa M, Yamachika N, Okinaka Y, Shacham-Diamand Y, Osaka T. An electrochemical investigation of additive effect in trench-filling of ULSI interconnects by electroless copper deposition[J]. Electrochemistry, 2007, 75(4): 349-358.
doi: 10.5796/electrochemistry.75.349 URL |
[43] |
Wang X, Yang Z F, Li N, Liu Z H, Yang Z P, Wang Z L. First synergy effects of SPS and PEG-4000 on the bottom-up filling in electroless copper plating[J]. J. Electro-chem. Soc., 2010, 157(10): D546-D549.
doi: 10.1149/1.3479191 URL |
[44] |
Yang Z F, Wang X, Li N, Wang Z X, Wang Z L. Design and achievement of a complete bottom-up electroless copper filling for sub-micrometer trenches[J]. Electrochim. Acta, 2011, 56(9): 3317-3321.
doi: 10.1016/j.electacta.2011.01.022 URL |
[45] |
Zan L X, Liu Z H, Yang Z P, Wang Z L. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating[J]. Electrochem. Solid-State Lett., 2011, 14(12): D107-D109.
doi: 10.1149/2.018112esl URL |
[46] |
Zan L X, Wang Z L, Liu Z H, Yang Z P. Achievement of bottom-up electroless nickel filling on the SiO2 surface with Pd-activated SAM[J]. ECS Electrochem. Lett., 2013, 2(1): D1-D3.
doi: 10.1149/2.006301eel URL |
[1] | 王赵云, 金磊, 杨家强, 李威青, 詹东平, 杨防祖, 孙世刚. 高密度互连印制电路板孔金属化研究和进展[J]. 电化学(中英文), 2021, 27(3): 316-331. |
[2] | 谢治辉*, 余刚*. 酸性化学镀镍磷合金的动力学机理[J]. 电化学(中英文), 2014, 20(6): 576-581. |
[3] | 王博莲, 赵亚萍, 蔡再生. 锦纶织物表面无Sn2+离子敏化活化法化学镀银工艺优化[J]. 电化学(中英文), 2013, 19(3): 281-288. |
[4] | 胡光辉, 曾海霞, 魏志钢, 潘湛昌, 谢署光, 邹燕娣. Ni-P-TiO2化学复合镀层电极的乙醇电催化氧化[J]. 电化学(中英文), 2012, 18(2): 186-190. |
[5] | 孟云, 赵亚萍, 蔡再生. 锦纶织物无钯活化化学镀银工艺及性能研究[J]. 电化学(中英文), 2011, 17(4): 380-387. |
[6] | 李莉莉, 王炜. 巯基改性棉纤维化学镀银导电布的研究[J]. 电化学(中英文), 2011, 17(2): 222-226. |
[7] | 周宥辰, 王艳艳, 马志方, 姜艳霞, 邱瑾, 孙世刚, . 湿化学镀SPR金基底及其性能表征[J]. 电化学(中英文), 2011, 17(1): 31-36. |
[8] | 张林, 王炜, 吴茜臻, . 溶胶-凝胶技术在织物化学镀活化预处理中的应用[J]. 电化学(中英文), 2010, 16(1): 112-115. |
[9] | 马跃辉, 王炜, 俞丹, 何瑾馨, . 自组装技术在电磁屏蔽织物加工中的应用[J]. 电化学(中英文), 2008, 14(4): 422-426. |
[10] | 阳利军, 刘贵昌, 王随林, 施志聪, . Ni-Cu-P合金镀层在燃气冷凝换热器上的应用[J]. 电化学(中英文), 2008, 14(3): 325-329. |
[11] | 朱静, 苏怡, 马华, 程方益, 陶占良, 梁静, 陈军, . 化学镀制备高性能直接乙醇燃料电池(DEFC)阳极催化剂PtRu/C和PtRuSn/C[J]. 电化学(中英文), 2008, 14(2): 150-154. |
[12] | 杨斌, 杨防祖, 黄令, 许书楷, 姚光华, 周绍民, . 2,2′-联吡啶在化学镀铜中的作用研究[J]. 电化学(中英文), 2007, 13(4): 425-430. |
[13] | 申丹丹, 杨防祖, 吴辉煌, . 2,2′-联吡啶和亚铁氰化钾对乙醛酸化学镀铜的影响[J]. 电化学(中英文), 2007, 13(1): 67-71. |
[14] | 王增林;刘志鹃;姜洪艳;王秀文;新宫原 正三;. 化学镀技术在超大规模集成电路互连线制造过程的应用[J]. 电化学(中英文), 2006, 12(2): 125-133. |
[15] | 胡光辉;吴辉煌;杨防祖;. 碳纳米管表面的无钯活化化学镀镍研究[J]. 电化学(中英文), 2006, 12(1): 25-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||