电化学(中英文) ›› 2018, Vol. 24 ›› Issue (5): 455-465. doi: 10.13208/j.electrochem.180144
赵丹丹,张楠,卜令正,邵琪,黄小青*
收稿日期:
2018-05-14
修回日期:
2018-06-12
出版日期:
2018-10-28
发布日期:
2018-06-26
通讯作者:
黄小青
E-mail:hxq006@suda. edu. cn
基金资助:
ZHAO Dan-dan, ZHANG Nan, Bu Ling-zheng, SHAO Qi, HUANG Xiao-qing*
Received:
2018-05-14
Revised:
2018-06-12
Published:
2018-10-28
Online:
2018-06-26
Contact:
HUANG Xiao-qing
E-mail:hxq006@suda. edu. cn
摘要: 氢气具有环境友好、含量丰富、高能量密度等特点,是一种可以替代化石能源的绿色环保可再生能源. 电解水是制备氢气最有效途径之一. 但在电解水过程中,动力学过程非常缓慢,过电位较大的阳极析氧半反应严重限制了阴极析氢反应效率. 因此,研究高效、稳定和低成本的催化剂来降低析氧反应的过电位,从而提高析氢反应效率受到了广泛关注. 基于非贵金属催化剂本身特性及其在高浓度OH-条件下具有较高OER催化活性等原因,本文首先简要介绍碱性条件下析氧反应机理及其性能的评价方法,然后重点讨论非贵金属电催化析氧催化剂的最新研究进展. 最后对如何深入研究催化机理、设计高效、双功能及新型非贵金属电催化析氧催化剂进行了展望.
中图分类号:
赵丹丹,张楠,卜令正,邵琪,黄小青. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学(中英文), 2018, 24(5): 455-465.
ZHAO Dan-dan, ZHANG Nan, Bu Ling-zheng, SHAO Qi, HUANG Xiao-qing. Recent Advances in Non-Noble Metal Nanomaterials for Oxygen Evolution Electrocatalysis[J]. Journal of Electrochemistry, 2018, 24(5): 455-465.
[1] Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Review, 2007, 107(10): 3904-3951. [2] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337. [3] Gasteiger H A, Markovic N M. Just a dream-or future reality?[J]. Science, 2009, 324(5923): 48-49. [4] Hoffert M I, Caldeira K, Jain A K, et al. Energy implications of future stabilization of atmospheric CO2 content[J]. Nature, 1998, 395(6705): 881-884. [5] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. [6] Winsche W E, Hoffman K C, Salzano F J. Hydrogen: Its future role in the nation's energy economy[J]. Science, 1973, 180(4093): 1325-1332. [7] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [8] Gu S, Xu B J, Yan Y S. Electrochemical energy engineering: A new frontier of chemical engineering innovation[J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5: 429-454. [9] Peng Z, Jia D S, Al-Enizi A M, et al. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts[J]. Advanced Energy Materials, 2015, 5(9): 1402031. [10] Kong D S, Cha J J, Wang H T, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy & Environmental Science, 2013, 6(12): 3553-3558. [11] Hong W T, Risch M, Stoerzinger K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energy & Environmental Science, 2015, 8(5): 1404-1427. [12] Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 0003. [13] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459. [14] Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review[J]. ACS Catalysis, 2016, 6(12): 8069-8097. [15] Yu X Y, Feng Y, Jeon Y, et al. Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution[J]. Advanced Materials, 2016, 28(40): 9006-9011. [16] Zhou W J, Wu X J, Cao X H, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energy & Environmental Science, 2013, 6(10): 2921-2924. [17] Bediako D K, Lassalle-Kaiser B, Surendranath Y, et al. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2012, 134(15): 6801-6809. [18] Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267. [19] Pi Y C, Zhang N, Guo S J, et al. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range[J]. Nano letters, 2016, 16(7): 4424-4430. [20] Trotochaud L, Ranney J K, Williams K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society, 2012, 134(41): 17253-17261. [21] Rossmeisl J, Qu Z W, Zhu H, et al. Electrolysis of water on oxide surfaces[J]. Journal of Electroanalytical Chemistry, 2007, 607(1): 83-89. [22] Bockris J O, Reddy A K N, Gamboa-Aldeco M. Modern Electrochemistry 2A. Fundamentals of electrodics[M]. New York, Kluwer Academic, 2000. [23] Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports, 2015, 5: 13801. [24] Parent A R, Sakai K. Progress in base-metal water oxidation catalysis[J]. ChemSusChem, 2014, 7(8): 2070-2080. [25] Huang J H, Chen J T, Yao T, et al. CoOOH nanosheets with high mass activity for water oxidation[J]. Angewandte Chemie International Edition, 2015, 54(30): 8722-8727. [26] Friebel, D, Louie M. W, Bajdich M, et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. Journal of the American Chemical Society, 2015, 137(3): 1305-1313. [27] Ping J F, Wang Y X, Lu Q P, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced Materials, 2016, 28(35): 7640-7645. [28] Fan K, Chen H, Ji Y F, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nature Communications, 2016, 7: 11981. [29] Gong M, Li Y Q, Wang H L, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455. [30] Hunter B M, Hieringer W, Winkler J R, et al. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity[J]. Energy & Environmental Science, 2016, 9(5): 1734-1743. [31] Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5: 4477. [32] Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281. [33] Yang Y, Zhou M, Guo W L, et al. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation[J]. Electrochimica Acta, 2015, 174(20): 246-253. [34] Yuan C Z, Wu H B, Xie Y, et al. Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6): 1488-1504. [35] Yang Y, Fei H L, Ruan G D, et al. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers[J]. ACS Nano, 2014, 8(9): 9518-9523. [36] Xiong X L, You C, Liu Z, et al. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2883-2887. [37] Gao W, Xia Z M, Cao F X, et al. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706056. [38] Huang J Z(黄金昭), Xu Z(徐征), Li H L(李海玲), et al. Electrochemical studies of iron-doped nickel oxide electrode for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2006, 12(2): 154-158. [39] Yang T L(杨太来), Dong W Y(董文燕), Yang H M(杨慧敏), et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2007, 19(13): 4256-4259. [40] Qin J S, Du D Y, Guan W, et al. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. Journal of the American Chemical Society, 2015, 137(22): 7169-7177. [41] Miner E M, Fukushima T, Sheberla D, et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2[J]. Nature Communications, 2016, 7: 10942. [42] Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2015, 137(44): 14129-14135. [43] Li S P, Zhang G, Tu X M, et al. Polycrystalline CoP/CoP2 structures for efficient full water splitting[J]. ChemElectroChem, 2018, 5(4): 701-707. [44] Gu Y, Chen S, Ren J, et al. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(1): 245-253. [45] Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(6): 1502313. [46] Jiang H L, Yao Y F, Zhu Y H, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21511-21520. [47] Du Y S, Cheng G Z, Luo W. NiSe2/FeSe2 nanodendrites: A highly efficient electrocatalyst for oxygen evolution reaction[J]. Catalysis Science & Technology, 2017, 7(20): 4604-4608. [48] Sun X H, Shao Q, Pi Y C, et al. A general approach to synthesise ultrathin NiM (M= Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7769-7775. [49] Long X, Li J K, Xiao S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(29): 7584-7588. [50] Zhang Y, Shao Q, Pi Y C, et al. A cost-efficient bifunctional ultrathin nanosheets array for electrochemical overall water splitting[J]. Small, 2017, 13(27): 1700305. [51] Zhang B, Zheng X L, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. [52] Pi Y C, Shao Q, Wang P T, et al. Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2017, 56(16): 4502-4506. [53] Feng J X, Ye S H, Xu H, et al. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J]. Advanced Materials, 2016, 28(23): 4698-4703. [54] Zhang Y, Shao Q, Long S, et al. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting[J]. Nano Energy, 2018, 45: 448-455. [55] Gao W, Xia Z M, Cao F X, et al. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706056. [56] Ye Z G, Li T, Ma G, et al. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction[J]. Advanced Functional Materials, 2017, 27(44): 1704083. [57] Gao X H, Zhang H X, Li Q G, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie International Edition, 2016, 55(21): 6290-6294. [58] Yang H D, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4[J]. ACS Catalysis, 2017, 7(8): 5557-5567. [59] Sun Y F, Gao S, Lei F C, et al. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts[J]. Chemical Science, 2014, 5(10): 3976-3982. [60] Lyu Y Q, Ciucci F. Activating the bifunctionality of a perovskite oxide toward oxygen reduction and oxygen evolution reactions[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35829-35836. [61] Zhu Y L, Zhou W, Chen Z G, et al. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution[J]. Angewandte Chemie International Edition, 2015, 54(13): 3897-3901. [62] Liu S B, Luo H, Li Y H, et al. Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10-δ[J]. Nano Energy, 2017, 40: 115-121. [63] Li F L, Shao Q, Huang X Q, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(7): 1888-1892. [64] Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184. [65] Lu X F, Liao P Q, Wang J W, et al. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society, 2016, 138(27): 8336-8339. [66] Zhou M, Weng Q H, Zhang X Y, et al. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms[J]. Journal of Materials Chemistry A, 2017, 5(9): 4335-4342. [67] Chen P Z, Xu K, Fang Z W, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714. [68] Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Letters, 2017, 2(8): 1937-1938. [69] Xu X, Liu J, Wu H Z, et al. Highly crystalline nickel borate nanorods as oxygen evolution reaction electrocatalysts[J]. Journal of Electrochemistry, 2018, 24(4): 319-323.
|
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[9] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[10] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[11] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[12] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[13] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[14] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[15] | 郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||