[1] Chandross E A. Shining a light on solar water splitting[J]. Science, 2014, 344(6183): 469.
[2] Yan D F, Dou S, Li T, et al. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction[J]. Journal of Material Chemistry A, 2016, 4(36): 13726-13730.
[3] Schröder M, Kailasam K, Borgmeyer J, et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation[J]. Energy Technology, 2015, 3(10): 1014-1017.
[4] Tang C, Cheng N Y, Pu Z H, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355.
[5] Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334(6056): 645-648.
[6] Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2004, 78(5): 661-669.
[7] Gandia L M, Oroz R, Ursua A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy & Fuels, 2007, 21(3): 1699-1706.
[8] Pinhassi R I, Kallmann D, Saper G, et al. Hybrid bio-photo-electro-chemical cells for solar water splitting[J]. Nature Communications, 2016, 7: 12552.
[9] Rothschild A, Dotan H. Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis[J]. ACS Energy Letters, 2017, 2(1): 45-51.
[10] Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
[11] Voiry D, Yamaguchi H, Li J W, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials, 2013, 12(9): 850-855.
[12] Wang Y Y, Zhang Y Q, Liu Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21): 5867-5871.
[13] Li F L, Shao Q, Huang X Q, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1888-1892.
[14] Xu W W, Lu Z Y, Wan P B, et al. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016, 12(18): 2492-2498.
[15] Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J]. Science, 2008, 321(5892): 1072-1075.
[16] Yang T L(杨太来), Dong W Y(董文燕), Yang H M(杨慧敏), et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2015, 21(2):
187-192.
[17] Wu Z X(吴则星), Wang J(王杰), Guo J P(郭军坡), et al. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 192-204.
[18] Berger A, Segalman R A, Newman J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell[J]. Energy & Environmental Science, 2014, 7(4): 1468-1476.
[19] Chen P, Xu K, Fang Z W, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714.
[20] Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281.
[21] You B, Liu X, Jiang N, et al. General strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical Society, 2016, 138, 41: 13639-13646.
[22] Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326-1330.
[23] Chen L, Dong X L, Wang Y G, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications, 2016, 7: 11741.
[24] Landman A, Dotan H, Shter G E, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nature Materials, 2017, 16(6): 645-651.
[25] Ma Y Y, Dong X L, Wang R H, et al. Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production[J]. Energy Storage Materials, 2018, 11: 260-266.
[26] Muench S, Wild A, Friebe C, et al. Polymer-based organic batteries[J]. Chemical Reviews, 2016, 116: 9438-9484.
[27] Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017, 16(8): 841-848.
[28] Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt”electrolyte[J]. Chemistry-A European Journal, 2017, 23(11): 2560-2565.
[29] Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908.
[30] Lakshmanan S, Murugesan T. The chlor-alkali process: Work in progress[J]. Clean Technologies and Environmental Policy, 2013, 16(2): 225-234.
[31] Fauvarque J. The chlorine industry[J]. Pure and Applied Chemistry, 1996, 68(9): 1713-1720.
[32] Hou M Y, Chen L, Guo Z W, et al. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production[J]. Nature Communications, 2018, 9: 438. |