电化学(中英文) ›› 2018, Vol. 24 ›› Issue (5): 466-487. doi: 10.13208/j.electrochem.180142
夏力行,刘昊,刘琳,谭占鳌*
收稿日期:
2018-01-28
修回日期:
2018-03-26
出版日期:
2018-10-28
发布日期:
2018-04-24
通讯作者:
谭占鳌
E-mail:tanzhanao@ncepu.edu.cn
基金资助:
XIA Li-xing, LIU Hao, LIU Lin, TAN Zhan-ao*
Received:
2018-01-28
Revised:
2018-03-26
Published:
2018-10-28
Online:
2018-04-24
Contact:
TAN Zhan-ao
E-mail:tanzhanao@ncepu.edu.cn
摘要: 氧化还原液流电池(简称液流电池)是一种正在积极研制开发的新型大容量电化学储能装置,其活性物质是流动的电解质溶液,最显著的特点是规模化蓄电. 在广泛利用可再生能源的呼声高涨形势下,可以预见液流电池将迎来一个快速发展的时期. 氧化还原活性物质是液流电池能源转化的载体,也是液流电池中最核心的部分.传统液流电池利用无机材料作为活性物质,然而,无机材料成本高、毒性、资源有限、形成枝晶和电化学活性低等缺点限制了液流电池的大规模应用. 有机活性物质由于具有成本低、“绿色”、资源丰富、分子能级易于调节和电化学反应快等优点,引起了国内外的广泛关注. 近年来,有机液流电池的性能得到快速提升,一系列有机活性物质相继被开发出来. 本文梳理了近年来有机液流电池的研究进展. 首先简要介绍了液流电池的应用领域和技术特点;然后根据电解液种类的不同,详细讨论了有机活性物质在水系和非水系液流电池的应用情况;最后展望了有机液流电池走向实际应用所面临的挑战和潜在研究方向.
中图分类号:
夏力行,刘昊,刘琳,谭占鳌. 有机氧化还原液流电池的研究进展[J]. 电化学(中英文), 2018, 24(5): 466-487.
XIA Li-xing, LIU Hao, LIU Lin, TAN Zhan-ao. Recent Progress in Organic Redox Flow Batteries[J]. Journal of Electrochemistry, 2018, 24(5): 466-487.
[1] Jacobson M Z, Delucchi M A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy policy, 2011, 39(3): 1154-1169. [2] Dincer I. Renewable energy and sustainable development: A crucial review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(2): 157-175. [3] Lund H. Renewable energy strategies for sustainable development[J]. Energy, 2007, 32(6): 912-919. [4] Weitemeyer S, Kleinhans D, Vogt T, et al. Integration of renewable energy sources in future power systems: The role of storage[J]. Renewable Energy, 2015, 75: 14-20. [5] Braff W A, Mueller J M, Trancik J E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change, 2016, 6(10): 964-969. [6] Rugolo J, Aziz M J. Electricity storage for intermittent renewable sources[J]. Energy & Environmental Science, 2012, 5(5): 7151-7160. [7] Soloveichik G L. Battery technologies for large-scale stationary energy storage[M]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 503-527. [8] Badwal S P S, Giddey S S, Munnings C, et al. Emerging electrochemical energy conversion and storage technologies[J]. Frontiers in Chemistry, 2014, 2: UNSP 79. [9] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. [10] Wei X L, Pan W X, Duan W T, et al. Materials and systems for organic redox flow batteries: Status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204. [11] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of The Electrochemical Society, 2011, 158(8): R55-R79. [12] Butler P, Miller J L, Taylor P A. Energy storage opportunities analysis phase ii final report a study for the DOE energy storage systems program[J]. Sandia National Laboratories, 2002, 60: 24. [13] Winsberg J, Hagemann T, Janoschka T, et al. Redox-flow batteries: From metals to organic redox-active materials[J]. Angewandte Chemie International Edition, 2017, 56(3): 686-711. [14] Lai Q Z, Zhang H M, Li X F, et al. A novel single flow zinc-bromine battery with improved energy density[J]. Journal of Power Sources, 2013, 235: 1-4. [15] Dong Q F(董全峰), Zhang H M(张华民), Jin M G(金明钢), et al. Research progresses in a flow redox battery[J]. Journal of Electrochemistry(电化学), 2005, 11(3): 237-243. [16] Li B, Nie Z M, Vijayakumar M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: 6303. [17] Thaller L H. Electrically rechargeable redox flow cell: U.S. Patent 3,996,064[P]. 1976. [18] Ito Y, Nyce M, Plivelich R, et al. Zinc morphology in zinc-nickel flow assisted batteries and impact on performance[J]. Journal of Power Sources, 2011, 196(4): 2340-2345. [19] Gong K, Ma X, Conforti K M, et al. A zinc-iron redox-flow battery under $100 per kWh of system capital cost[J]. Energy & Environmental Science, 2015, 8(10): 2941-2945. [20] Xue F Q, Wang Y L, Wang W H, et al. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery[J]. Electrochimica Acta, 2008, 53(22): 6636-6642. [21] Gong K, Xu F, Grunewald J B, et al. All-soluble all-iron aqueous redox-flow battery[J]. ACS Energy Letters, 2016, 1(1): 89-93. [22] Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources, 1988, 22(1): 59-67. [23] Wikipedia, The Free Encyclopedia. Vanadium redox battery[Eb/OL]. https://en.wikipedia.org/wiki/Vanadium_redox_battery. [24] Wang X L(王晓丽), Zhang Y(张宇), Zhang H M(张华民). Latest progresses in vanadium flow battery technologies and applications[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 433-440. [25] Viswanathan V, Crawford A, Stephenson D, et al. Cost and performance model for redox flow batteries[J]. Journal of Power Sources, 2014, 247: 1040-1051. [26] Noack J, Roznyatovskaya N, Herr T, et al. The chemistry of redox-flow batteries[J]. Angewandte Chemie International Edition, 2015, 54(34): 9776-9809. [27] Zhang L Q, Zhang H M, Lai Q Z, et al. Development of carbon coated membrane for zinc/bromine flow battery with high power density[J]. Journal of Power Sources, 2013, 227: 41-47. [28] Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry Communications, 2007, 9(11): 2639-2642. [29] Xie C X, Duan Y Q, Xu W B, et al. A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage[J]. Angewandte Chemie International Edition, 2017, 56(47): 14953-14957. [30] Livshits V, Ulus A, Peled E. High-power H2/Br2 fuel cell[J]. Electrochemistry Communications, 2006, 8(8): 1358-1362. [31] Huskinson B, Rugolo J, Mondal S K, et al. A high power density, high efficiency hydrogen-hlorine regenerative fuel cell with a low precious metal content catalyst[J]. Energy & Environmental Science, 2012, 5(9): 8690-8698. [32] Yeo R S, McBreen J. Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells[J]. Journal of The Electrochemical Society, 1979, 126(10): 1682-1687. [33] Lin G, Chong P Y, Yarlagadda V, et al. Advanced hydrogen-bromine flow batteries with improved efficiency, durability and cost[J]. Journal of The Electrochemical Society, 2016, 163(1): A5049-A5056. [34] Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. [35] Hu B, DeBruler C, Rhodes Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214. [36] Ding Y, Yu G. The promise of environmentally benign redox flow batteries by molecular engineering[J]. Angewandte Chemie International Edition, 2017, 56(30): 8614-8616. [37] Xu Y, Wen Y H, Cheng J, et al. A study of tiron in aqueous solutions for redox flow battery application[J]. Electrochimica Acta, 2010, 55(3): 715-720. [38] Yang B, Hoober-Burkhardt L, Krishnamoorthy S, et al. High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes[J]. Journal of The Electrochemical Society, 2016, 163(7): A1442-A1449. [39] Gerhardt M R, Beh E S, Tong L, et al. Comparison of capacity retention rates during cycling of quinone-bromide flow batteries[J]. MRS Advances, 2017, 2(8): 431-438. [40] Chen Q, Gerhardt M R, Hartle L, et al. A quinone-bromide flow battery with 1 W/cm2 power density[J]. Journal of The Electrochemical Society, 2016, 163(1): A5010-A5013. [41] Yang B, Hoober-Burkhardt L, Wang F, et al. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples[J]. Journal of The Electrochemical Society, 2014, 161(9): A1371-A1380. [42] Lin K, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. [43] Lin K, Gómez-Bombarelli R, Beh E S, et al. A redox-flow battery with an alloxazine-based organic electrolyte[J]. Nature Energy, 2016, 1(9): 16102-16109. [44] Yang Z J, Tong L C, Tabor D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018,8(8): UNSP 1702056. [45] Hu B, Seefeldt C, DeBruler C, et al. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22137-22145. [46] Janoschka T, Martin N, Hager M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie International Edition, 2016, 55(46): 14427-14430. [47] Liu T B, Wei X L, Nie Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): 1501449. [48] Janoschka T, Martin N, Martin U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527(7576): 78-81. [49] Beh E S, De Porcellinis D, Gracia R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. [50] Luo J, Hu B, Debruler C, et al. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie-International Edition, 2018, 57(1): 231-235. [51] Wang W, Luo Q T, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986. [52] Leung P, Li X, De León C P, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125-10156. [53] Brushett F R, Vaughey J T, Jansen A N. An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials, 2012, 2(11): 1390-1396. [54] Li Z, Li S, Liu S Q, et al. Electrochemical properties of an all-organic redox flow battery using 2, 2, 6, 6-tetramethyl-1-piperidinyloxy and N-methylphthalimide[J]. Electrochemical and Solid-State Letters, 2011, 14(12): A171-A173. [55] Wei X, Xu W, Vijayakumar M, et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653. [56] Liu Q, Sleightholme A E S, Shinkle A A, et al. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315. [57] Takechi K, Kato Y, Hase Y. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries[J]. Advanced Materials, 2015, 27(15): 2501-2506. [58] Friedl J, Lebedeva M A, Porfyrakis K, et al. All fullerene-based cells for non-aqueous redox flow batteries[J]. Journal of the American Chemical Society, 2017, 140(1):401-405. [59] Duan W, Huang J, Kowalski J A, et al. “Wine-dark sea” in an organic flow battery: Storing negative charge in 2, 1, 3-benzothiadiazole radicals leads to improved cyclability[J]. ACS Energy Letters, 2017, 2(5): 1156-1161. [60] Huang J, Cheng L, Assary R S, et al. Liquid catholyte molecules for nonaqueous redox flow batteries[J]. Advanced Energy Materials, 2015, 5(6): 1401782. [61] Wei X, Xu W, Huang J, et al. Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie International Edition, 2015, 54(30): 8684-8687. [62] Sevov C S, Hickey D P, Cook M E, et al. Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications[J]. Journal of the American Chemical Society, 2017, 139(8): 2924-2927. [63] Wei X L, Duan W T, Huang J H, et al. A high-current, stable nonaqueous organic redox flow battery[J]. ACS Energy Letters, 2016, 1(4): 705-711. [64] Potash R A, McKone J R, Conte S, et al. On the benefits of a symmetric redox flow battery[J]. Journal of The Electrochemical Society, 2016, 163(3): A338-A344. [65] Winsberg J, Stolze C, Muench S, et al. TEMPO/phenazine combi-molecule: A redox-active material for symmetric aqueous redox-flow batteries[J]. ACS Energy Letters, 2016, 1(5): 976-980. [66] Heiland N, Cidarér C, Rohr C, et al. Design and evaluation of a boron dipyrrin electrophore for redox flow batteries[J]. ChemSusChem, 2017, 10(21): 4215-4222. [67] Hagemann T, Winsberg J, Häupler B, et al. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery[J]. NPG Asia Materials, 2017, 9(1): e340. [68] Winsberg J, Hagemann T, Muench S, et al. Poly-(boron-dipyrromethene)—A redox-active polymer class for polymer redox-flow batteries[J]. Chemistry of Materials, 2016, 28(10): 3401-3405.. [69] Ma T, Pan Z, Miao L C, et al. Porphyrin-based symmetric redox flow batteries towards cold-climate energy storage[J]. Angewandte Chemie International Edition, 2018, 57(12): 3158-3162. [70] Duan W, Vemuri R S, Milshtein J D, et al. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456. [71] Deng Q, Huang P, Zhou W X, et al. A high-performance composite electrode for vanadium redox flow batteries[J]. Advanced Energy Materials, 2017, 7(18): 1700461. [72] Schnucklake M, Kuecken S, Fetyan A, et al. Salt-templated porous carbon-carbon composite electrodes for application in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(48): 25193-25199. [73] He Z X, Jiang Y Q, Li Y H, et al. Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery[J]. Carbon, 2018, 127: 297-304. [74] Melke J, Jakes P, Langner J, et al. Carbon materials for the positive electrode in all-vanadium redox flow batteries[J]. Carbon, 2014, 78: 220-230. [75] Li H(李华), Chang S W(常守文), Yan C W(严川伟). Research progress on electrode material in all-vanadium redox battery[J]. Journal of Electrochemistry(电化学), 2005, 8(3): 257-262.
|
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[3] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[4] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[5] | 丁伟杰, 杨春晖, 冯钟涛, 陆仕荣, 程旭. 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学(中英文), 2024, 30(5): 2313003-. |
[6] | 李鹏飞, 寇广生, 亓丽萍, 仇友爱. 电化学脱卤氘化研究进展[J]. 电化学(中英文), 2024, 30(5): 2313005-. |
[7] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[8] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[9] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[10] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[11] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[12] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[13] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[14] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[15] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||