[1] |
Kebede A A, Kalogiannis T, Van Mierlo J, Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration[J]. Renew. Sust. Energ. Rev., 2022, 159: 112213.
|
[2] |
Huang X, Luo B, Chen P, Searles D J, Wang D, Wang L Z. Sulfur-based redox chemistry for electrochemical energy storage[J]. Coord. Chem. Rev., 2020, 422: 213445.
|
[3] |
Chen H S, Cong T N, Yang W, Tan C Q, Li Y L, Ding Y L. Progress in electrical energy storage system: A critical review[J]. Prog. Nat. Sci., 2009, 19(3): 291-312.
|
[4] |
Tian Y S, Zeng G B, Rutt, A, Shi T, Kim H, Wang J Y, Koettgen J, Sun Y Z, Ouyang B, Chen T, Lun Z Y, Rong Z Q, Persson K, Ceder G. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chem. Rev., 2021, 121 (3): 1623-1669.
doi: 10.1021/acs.chemrev.0c00767
pmid: 33356176
|
[5] |
Yang Z G, Dai Y, Wang S P, Yu J X. How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods[J]. J. Mater. Chem. A., 2016, 4(47): 18210-18222.
|
[6] |
Shi Z C, Li C, Yang Y. The electrochemical performance studies on novel LiFePO4 cathode materials for Li-ion batteries[J]. J. Electrochem., 2003, 9(1): 9-14.
|
[7] |
Xie H, Zhou Z H. The synthesis, structure and electrochemical performances of lithium iron phosphate[J]. J. Electrochem., 2006, 12(4): 378-381.
|
[8] |
Niu J T, Sun L, Kang S W, Zhao Z W, Ma Z F. Impact of water content on the performance of LiFePO4 based lithium-ion battery[J]. J. Electrochem., 2015, 21(5): 465-470.
|
[9] |
Peng Y F, Zhong C, Ding M F, Zhang H Y, Jin Y T, Hu Y G, Liao Y Q, Yang L F, Wang S X, Yin X T, Liang J D, Wei Y M, Chen J, Yan J W, Wang X F, Gong Z L, Yang Y. Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries[J]. Adv. Funct. Mater., 2024, 34(42): 2404495.
|
[10] |
Holtstiege F, Wilken A, Winter M, Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries[J]. Phys. Chem. Chem. Phys., 2017, 19(38), 25905-25918.
doi: 10.1039/c7cp05405j
pmid: 28926044
|
[11] |
Wang Cun, Zhang W J, He T F, Lei B, Shi Y J, Zhang Y D, Luo W L, Jiang F M. Degradation and thermal characteristics of LiNi0.8Co0.15Al0.05O2/Graphite lithium ion battery after different state of charge ranges cycling[J]. J. Electrochem., 2020, 26(6): 777-788.
|
[12] |
Lang S Y, Shen Z Z, Hu X C, Shi Y, Guo Y G, Jia F F, Wang F Y, Wen R, Wan L J. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode[J]. Nano Energy., 2020, 75: 104967.
|
[13] |
Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895.
|
[14] |
Zou K Y, Deng W T, Cai P, Deng X L, Wang B W, Liu C, Li J Y, Hou H S, Zou G Q, Ji X B. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives[J]. Adv. Funct. Mater., 2020, 31(5): 2005581.
|
[15] |
Sun Y M, Lee H W, Seh Z W, Liu N, Sun J, Li Y Z, Cui Y. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nat. Energy, 2016, 1(1): 15008.
|
[16] |
Li Z, Sun X Z, Liu W J, Zhang X, Wang K, Ma Y W. A comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitors[J]. J. Electrochem., 2019, 25(1): 122-136.
doi: 10.13208/j.electrochem.180306
|
[17] |
Yue X Y, Yao Y X, Zhang J, Yang S Y, Li Z H, Yan C, Zhang Q. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries[J]. Adv. Mater., 2022, 34(15): 2110337.
|
[18] |
Cao Z Y, Xu P Y, Zhai H W, Du S C, Mandal J, Dontigny M, Zaghib K, Yang Y. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Lett., 2016, 16(11): 7235-7240.
pmid: 27696883
|
[19] |
Wu Z C, Li R H, Zhang S Q, Lv L, Deng T, Zhang H, Zhang R X, Liu J J, Ding S H, Fan L W, Chen L X, Fan X L. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664.
|
[20] |
Zhong W, Zeng Z Q, Cheng S J, Xie J. Advancements in prelithiation technology: transforming batteries from Li-shortage to Li-rich systems[J]. Adv. Funct. Mater., 2023, 34(2): 2307860.
|
[21] |
Liu X M, Wu Z, Xie L Q, Sheng L, Liu J H, Wang L, Wu K, He X M. Prelithiation enhances cycling life of lithium-ion batteries: a mini review[J]. Energy Environ. Mater., 2023, 6(6): e12501.
|
[22] |
Fu Y P, Xie Y, Zeng L Y, Shi Z C. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries[J]. Surf. Interfaces, 2023, 36: 102610.
|
[23] |
Pan Y J, Qi X Q, Du H R, Ji Y S, Yang D, Zhu Z L, Yang Y, Qie L, Huang Y H. Li2Se as a cathode prelithiation additive for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(15), 18763-18770.
|
[24] |
Zhan R M, Wang X C, Chen Z H, Seh Z W, Wang L, Sun Y M. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries[J]. Adv. Energy Mater., 2021, 11 (35): 2101565.
|
[25] |
Back C K, Yin R-Z, Shin S-J, Lee Y-S, Choi W, Kim Y S. Electrochemical properties and gas evolution behavior of overlithiated Li2NiO2 as cathode active mass for rechargeable Li ion batteries[J]. J. Electrochem. Soc., 2012, 159 (6): A887-A893.
|
[26] |
Kim M G, Cho J. Air stable Al2O3-coated Li2NiO2cathode additive as a surplus current consumer in a Li-ion cell[J]. J. Mater. Chem., 2008, 18(48): 5880-5887.
|
[27] |
Han H, Go C Y, Kim K C. Dopant-based modulation of structural, electronic, and electrochemical properties of Li-excessive Li2NiO2 cathodes[J]. Curr. Appl. Phys., 2023, 48, 1-10.
|
[28] |
Yue X Y, Yao Y X, Zhang J, Li Z H, Yang S Y, Li X L, Yan C, Zhang Q. The raw mixed conducting interphase affords effective prelithiation in working batteries[J]. Angew. Chem. Int. Ed., 2022, 61(29): e202205697.
|
[29] |
Lee H, Chang S K, Goh E Y, Jeong J Y, Lee J H, Kim H J, Cho J J, Hong S T. Li2NiO2 as a novel cathode additive for overdischarge protection of Li-ion batteries[J]. Chem. Mater., 2008, 20, 1, 5-7.
|
[30] |
Wu Y L, Zhang W, Li S H, Wen N F, Zheng J Q, Zhang L Y, Zhang Z A, Lai Y Q. Li2Cu0.1Ni0.9O2 with copper substitution: a new cathode prelithiation additive for lithium-ion batteries[J]. ACS Sustainable Chem. Eng., 2023, 11: 1044-1053.
|
[31] |
Biesinger M C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review[J]. Appl. Surf. Sci., 2022, 597: 153681.
|
[32] |
Sun H, Zhu G Z, Zhu Y M, Lin M C, Chen H, Li Y Y, Hung W H, Zhou B, Wang X, Bai Y X, Gu M, Huang C L, Tai H C, Xu X T, Angell M, Shyue J J, Dai H J. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Adv. Mater., 2020, 32(26): 2001741.
|
[33] |
Katayama M, Sumiwaka K, Miyahara R, Yamashige H, Arai H, Uchimoto Y, Ohta T, Inada Y, Ogumi Z. X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode[J]. J. Power Sources, 2014, 269: 994-999.
|
[34] |
Liu T C, Lin L P, Bi X X, Tian L L, Yang K, Liu J J, Li M F, Chen Z H, Lu J, Amine K, Xu K, Pan F. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nat. Nanotechnol., 2019, 14: 50-56.
doi: 10.1038/s41565-018-0284-y
pmid: 30420761
|