电化学(中英文) ›› 2022, Vol. 28 ›› Issue (12): 2219003. doi: 10.13208/j.electrochem.2219003
所属专题: “下一代二次电池”专题文章; iSAIEC 2023; “AI for Electrochemistry”专题文章
朱振威1, 邱景义1, 王莉2, 曹高萍1, 何向明2, 王京3, 张浩1,*()
收稿日期:
2022-08-31
修回日期:
2022-09-23
出版日期:
2022-12-28
发布日期:
2022-12-28
Zhen-Wei Zhu1, Jing-Yi Qiu1, Li Wang2, Gao-Ping Cao1, Xiang-Ming He2, Jing Wang3, Hao Zhang1,*()
Received:
2022-08-31
Revised:
2022-09-23
Published:
2022-12-28
Online:
2022-12-28
Contact:
*Tel: (86-10)66748524, E-mail: 摘要:
锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。
朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003.
Zhen-Wei Zhu, Jing-Yi Qiu, Li Wang, Gao-Ping Cao, Xiang-Ming He, Jing Wang, Hao Zhang. Application of Artificial Intelligence to Lithium-Ion Battery Research and Development[J]. Journal of Electrochemistry, 2022, 28(12): 2219003.
[1] |
Walsh A. The quest for new functionality[J]. Nat. Chem., 2015, 7(4): 274-275.
doi: 10.1038/nchem.2213 pmid: 25803462 |
[2] |
Mistry A, Franco A A, Cooper S J, Roberts S A, Viswanathan V. How machine learning will revolutionize electrochemical sciences[J]. ACS Energy Lett., 2021, 6(4): 1422-1431.
doi: 10.1021/acsenergylett.1c00194 pmid: 33869772 |
[3] |
Vegge T, Tarascon J M, Edström K. Toward better and smarter batteries by combining AI with multisensory and self-healing approaches[J]. Adv. Energy Mater., 2021, 11(23): 2100362.
doi: 10.1002/aenm.202100362 URL |
[4] |
El-Bousiydy H, Lombardo T, Primo E N, Duquesnoy M, Morcrette M, Johansson P, Simon P, Grimaud A, Franco A A. What can text mining tell us about lithium-ion battery researchers’ habits?[J] Batter. Supercaps, 2021, 4(5): 758-766.
doi: 10.1002/batt.202000288 URL |
[5] |
Duquesnoy M, Lombardo T, Chouchane M, Primo E N, Franco AA. Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning[J]. J. Power Sources, 2020, 480: 229103.
doi: 10.1016/j.jpowsour.2020.229103 URL |
[6] | Gao X L, Liu X H, He R, Wang M Y, Xie W L, Brandon N P, Wu B, Ling H P, Yang S C. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach[J]. Energy Storage Mater., 2021, 36: 435-458. |
[7] |
Berecibar M. Machine-learning techniques used to accurately predict battery life[J]. Nature, 2019, 568(7752): 325-326.
doi: 10.1038/d41586-019-01138-1 URL |
[8] |
Li Y, Liu K, Foley A M, Zu-lke A, Berecibar M, Nanini- Maury E, Van Mierlo J, Hoster H E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renew. Sust. Energy Rev., 2019, 113: 109254.
doi: 10.1016/j.rser.2019.109254 URL |
[9] |
Rezvanizaniani S M, Liu Z C, Chen Y, Lee J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. J. Power Sources, 2014, 256: 110-124.
doi: 10.1016/j.jpowsour.2014.01.085 URL |
[10] |
Chen C, Zuo Y X, Ye W K, Li X G, Deng Z, Ong S P. Critical review of machine learning of energy materials[J]. Adv. Energy Mater., 2020, 10(8): 1903242.
doi: 10.1002/aenm.201903242 URL |
[11] |
Gao T H, Lu W. Machine learning toward advanced energy storage devices and systems[J]. iScience, 2021, 24(1): 101936.
doi: 10.1016/j.isci.2020.101936 URL |
[12] |
Xu H Y, Zhu J E, Finegan D P, Zhao H B, Lu X K, Li W, Hoffman N, Bertei A, Shearing P, Bazant M Z. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: microscopic imaging, predictive modeling, and machine learning[J]. Adv. Energy Mater., 2021, 11(19): 2003908.
doi: 10.1002/aenm.202003908 URL |
[13] |
Li J G, Tu Y X, Liu R, Lu Y, Zhu X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots[J]. Adv. Sci., 2020, 7(7): 1901957.
doi: 10.1002/advs.201901957 URL |
[14] |
Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555.
doi: 10.1038/s41586-018-0337-2 URL |
[15] |
Severson K A, Attia P M, Jin N, Perkins N, Jiang B B, Yang Z, Chen M H, Aykol M, Herring P K, Fraggedakis D, Bazant M Z, Harris S J, Chueh W C, Braatz R D. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat. Energy, 2019, 4(5): 383-391.
doi: 10.1038/s41560-019-0356-8 |
[16] |
Petrich L, Westhoff D, Feinauer J, Finegan D P, Daemi S R, Shearing P R, Schmidt V. Crack detection in lithium-ion cells using machine learning[J]. Comput. Mater. Sci., 2017, 136: 297-305.
doi: 10.1016/j.commatsci.2017.05.012 URL |
[17] | Li S Q, Li J W, He H W, Wang H X. Lithium-ion battery modeling based on big data[M]. Editors: Yan J, Kaldellis J K, Campana P E, Energy Procedia, 2019, 159: 168-173. |
[18] | Russell S, Norvig P. Artificial intelligence a modern approach[M]. 4th ed. Hoboken, Pearson Education, Inc., 2020. |
[19] | Hastie T, Tibshirani R, Friedman J. The Elements of statistical learning[M]. 2nd ed. New York: Springer, 2017. |
[20] |
Han J Q, Jentzen A, Weinan E. Solving high-dimensional partial differential equations using deep learning[J]. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(34): 8505-8510.
doi: 10.1073/pnas.1718942115 URL |
[21] |
Qian E, Kramer B, Peherstorfer B, Willcox K. Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems[J]. Phys. D, 2020, 406: 132401.
doi: 10.1016/j.physd.2020.132401 URL |
[22] |
Zhao H B, Storey B D, Braatz R D, Bazant M Z. Learning the physics of pattern formation from images[J]. Phys. Rev. Lett., 2020, 124(6): 060201.
doi: 10.1103/PhysRevLett.124.060201 URL |
[23] |
Rynne O, Dubarry M, Molson C, Nicolas E, Lepage D, Prébé A, Aymé-Perrot D, Rochefort D, Dollé M. Exploiting materials to their full potential, a Li-ion battery electrode formulation optimization study[J]. ACS Appl. Energy Mater., 2020, 3(3): 2935-2948.
doi: 10.1021/acsaem.0c00015 URL |
[24] |
Li J, Arbizzani C, Kjelstrup S, Xiao J, Xia Y Y, Yu Y, Yang Y, Belharouak I, Zawodzinski T, Myung S T, Raccichini R, Passerini S. Good practice guide for papers on batteries for the journal of power sources[J]. J. Power Sources, 2020, 452: 227824.
doi: 10.1016/j.jpowsour.2020.227824 URL |
[25] |
Arbizzani C, Yu Y, Li J, Xiao J, Xia Y Y, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources[J]. J. Power Sources, 2020, 450: 227636.
doi: 10.1016/j.jpowsour.2019.227636 URL |
[26] |
Nakayama M, Kanamori K, Nakano K, Jalem R, Takeuchi I, Yamasaki H. Data-driven materials exploration for Li-ion conductive ceramics by exhaustive and informatics-aided computations[J]. Chem. Rec., 2019, 19(4): 771-778.
doi: 10.1002/tcr.201800129 URL |
[27] |
Jalem R, Nakayama M, Noda Y, Le T, Takeuchi I, Tateyama Y, Yamazaki H. A general representation scheme for crystalline solids based on voronoi-tessellation real feature values and atomic property data[J]. Sci. Technol. Adv. Mater., 2018, 19(1): 231-242.
doi: 10.1080/14686996.2018.1439253 URL |
[28] |
Isayev O, Fourches D, Muratov E N, Oses C, Rasch K, Tropsha A, Curtarolo S. Materials cartography: representing and mining materials space using structural and electronic fingerprints[J]. Chem. Mater., 2015, 27(3): 735-743.
doi: 10.1021/cm503507h URL |
[29] |
Rupp M, Tkatchenko A, Muller K R, Von Lilienfeld O A. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Phys. Rev. Lett., 2012, 108: 058301.
doi: 10.1103/PhysRevLett.108.058301 URL |
[30] |
Schutt K T, Glawe H, Brockherde F, Sanna A, Muller K R, Gross E K U. How to represent crystal structures for machine learning: towards fast prediction of electronic properties[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 89(20): 205118.
doi: 10.1103/PhysRevB.89.205118 URL |
[31] |
Yang L S, Dacek S, Ceder G. Proposed definition of crystal substructure and substructural similarity[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90(5): 054102.
doi: 10.1103/PhysRevB.90.054102 URL |
[32] |
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365.
doi: 10.1126/science.aat2663 pmid: 30049875 |
[33] |
Van Der Ven A, Deng Z, Banerjee S, Ong S P. Rechargeable alkali-ion battery materials: theory and computation[J]. Chem. Rev., 2020, 120(14): 6977-7019.
doi: 10.1021/acs.chemrev.9b00601 pmid: 32022553 |
[34] |
Behler J, Parrinello M, Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Phys. Rev. Lett., 2007, 98(14): 146401.
doi: 10.1103/PhysRevLett.98.146401 URL |
[35] |
Wang H, Zhang L F, Han J Q, Weinan E, DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Comput. Phys. Commun., 2008, 228: 178-184.
doi: 10.1016/j.cpc.2018.03.016 URL |
[36] |
Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schutt K Y, Tkatchenko A, MullerK R. Machine learning force fields[J]. Chem. Rev., 2021, 121(16): 10142-10186.
doi: 10.1021/acs.chemrev.0c01111 pmid: 33705118 |
[37] | Bhowmik A, Castelli I E, Garcia-Lastra J M, Jørgensen P B, Winther O, Vegge T. A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning[J]. Energy Storage Mater., 2019, 21: 446-456. |
[38] |
Häse F, Roch L M, Aspuru-Guzik A. Next-generation experimentation with self-driving laboratories[J]. Trends Chem., 2019, 1(3): 282-291.
doi: 10.1016/j.trechm.2019.02.007 URL |
[39] |
Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, Paria B, PÓczos B, Whitacre J, Viswanathan V. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning[J]. Cell Reports Phys. Sci., 2020, 1(12): 100264.
doi: 10.1016/j.xcrp.2020.100264 URL |
[40] |
Fitzhugh W, Ghen X, Wang Y C, Ye L H, Li X L. Solid-electrolyte-interphase design in constrained ensemble for solid-state batteries[J]. Energy Environ. Sci., 2021, 14(8): 4574-4583
doi: 10.1039/D1EE00754H URL |
[41] |
Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning[J]. Chem. Mater., 2017, 29(21): 9436-9444.
doi: 10.1021/acs.chemmater.7b03500 URL |
[42] |
Jain A, Hautier G, Ong S P, Persson K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships[J]. J. Mater. Res., 2016, 31(8): 977-994.
doi: 10.1557/jmr.2016.80 URL |
[43] |
Thon C, Finke B, Kwade A, Schilde C. Artificial intelligence in process engineering[J]. Adv. Intell. Syst., 2021, 3(6): 2000261.
doi: 10.1002/aisy.202000261 URL |
[44] | Evans R, Boreland M. A Multivariate approach to utilizing mid-sequence process control data[C]. 2015 IEEE 42nd Photovolt. Spec. Conf., PVSC 2015, December 17, 2015. |
[45] |
Turetskyy A, Thiede S, Thomitzek M, von Drachenfels N, Pape T, Herrmann C. Toward data-driven applications in lithium-ion battery cell manufacturing[J]. Energy Technol., 2020, 8(2): 1900136.
doi: 10.1002/ente.201900136 URL |
[46] |
Cunha R P, Lombardo T, Primo E N, Franco A A. Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies[J]. Batter. Supercaps, 2020, 3(1): 60-67.
doi: 10.1002/batt.201900135 URL |
[47] |
Lombardo T, Hoock J B, Primo E N, Ngandjong A C, Duquesnoy M, Franco A A. Accelerated optimization methods for force-field parametrization in battery electrode manufacturing modeling[J]. Batter. Supercaps, 2020, 3(8): 721-730.
doi: 10.1002/batt.202000049 URL |
[48] |
Mubarok K. Redefining industry 4.0 and its enabling technologies[J]. J. Phys.: Conf. Ser., 2020, 1569: 032025.
doi: 10.1088/1742-6596/1569/3/032025 URL |
[49] | Lin C C, Deng D J, Chen Z Y, Chen K C. Key design of driving industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks[J]. IEEE Commun. Mag., 2016, 54(10): 46-52. |
[50] |
Szymanski N J, Bartel C J, Zeng Y, Tu Q S, Ceder G. Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra[J]. Chem. Mater., 2021, 33(11): 4204-4215.
doi: 10.1021/acs.chemmater.1c01071 URL |
[51] |
Yang X G, Kahnt M, Bruckner D, Schropp A, Fam Y, Becher J, Grunwaldt J D, Sheppard T L, Schroer C G. Tomographic reconstruction with a generative adversarial network[J]. J. Synchrotron Radiat., 2020, 27: 486-493.
doi: 10.1107/S1600577520000831 pmid: 32153289 |
[52] |
Dixit M B, Verma A, Zaman W, Zhong X L, Kenesei P, Park J S, Almer J, Mukherjee P P, Hatzell K B. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning[J]. ACS Appl. Energy Mater., 2020, 3(10): 9534-9542.
doi: 10.1021/acsaem.0c02053 URL |
[53] |
Furat O, Finegan D P, Diercks D, Usseglio-Viretta F, Smith K, Schmidt V. Mapping the architecture of single electrode particles in 3D, using electron backscatter diffraction and machine learning segmentation[J]. J. Power Sources, 2021, 483: 229148.
doi: 10.1016/j.jpowsour.2020.229148 URL |
[54] | LaBonte T, Martinez C, Roberts S A. We know where we don’t know: 3D bayesian CNNs for credible geometric uncertainty[J]. 2019, arXiv:10.2172/1605518. |
[55] |
Jiang Z S, Li J Z, Yang Y, Mu L Q, Wei C X, Yu X Q, Pianetta P, Zhao K J, Cloetens P, Lin F, Liu Y J. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat. Commun., 2020, 11(1): 2310.
doi: 10.1038/s41467-020-16233-5 pmid: 32385347 |
[56] |
Tian F, Ben LB, Yu H Y, Ji H X, Zhao W W, Liu Z Z, Monteiro R, Ribas R M, Zhu Y M, Huang M J. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222.
doi: 10.1016/j.nanoen.2022.107222 URL |
[57] |
Li J Z, Sharma N, Jiang Z S, Yang Y, Monaco F, Xu Z R, Hou D, Ratner D, Pianetta P, Cloetens P, Lin F, Zhao K J, Liu Y J. Dynamics of particle network in composite battery cathodes[J]. Science, 2022, 376(6592): 517-521.
doi: 10.1126/science.abm8962 pmid: 35482882 |
[58] | Wang H S, Ji Y J, Li Y Y. Simulation and design of energy materials accelerated by machine learning[J]. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2020, 10(1): e1421. |
[59] |
Badmos O, Kopp A, Bernthaler T, Schneider G. Image-based defect detection in lithium-ion battery electrode using convolutional neural networks[J]. J. Intell. Manuf., 2020, 31(4): 885-897.
doi: 10.1007/s10845-019-01484-x URL |
[60] |
Nguyen T T, Villanova J, Su Z L, Tucoulou R, Fleutot B, Delobel B, Delacourt C, Demortiere A. 3D Quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by X-ray holographic nano-tomography[J]. Adv. Energy Mater., 2021, 11(8): 2003529.
doi: 10.1002/aenm.202003529 URL |
[61] |
Lu X K, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O’Regan K B, Heenan T M M, Hinds G, Kendrick E, Brett D J L, Shearing P R. 3D Microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nat. Commun., 2020, 11(1): 2079.
doi: 10.1038/s41467-020-15811-x pmid: 32350275 |
[62] |
Lu X K, Daemi S R, Bertei A, Kok M D R, O’Regan K B, Rasha L, Park J, Hinds G, Kendrick E, Brett D J L, Shearing P R. Microstructural evolution of battery electrodes during calendaring[J]. Joule, 2020, 4(12): 2746-2768.
doi: 10.1016/j.joule.2020.10.010 URL |
[63] |
Li Q, Yi T C, Wang X L, Pan H, Y Quan B G, Liang T J, Guo X X, Yu X Q, Wang H, Huang X J, Chen L Q, Li H. In-situ visualization of lithium plating in all-solid-state lithium-metal battery[J]. Nano Energy, 2019, 63: 103895.
doi: 10.1016/j.nanoen.2019.103895 URL |
[64] |
Kazyak E, Garcia-Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P. Li Penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4): 1025-1048.
doi: 10.1016/j.matt.2020.02.008 URL |
[65] |
Lombardo T, Duquesnoy M, El-Bouysidy H aAren F, Gallo-Bueno A, Jorgensen P B, Bhowmik A, Demortiere A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson, Franco A A. Artificial intelligence applied to battery research: hype or reality[J]. Chem. Rev., 2022, 122(12): 10899-10969
doi: 10.1021/acs.chemrev.1c00108 URL |
[66] |
Li W, Zhu J E, Xia Y, Gorji M B, Wierzbicki T. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3(11): 2703-2715.
doi: 10.1016/j.joule.2019.07.026 URL |
[67] | Zhu S, Zhao N Q, Sha J W. Predicting battery life with early cyclic data by machine learning[J]. Energy Storage, 2019, 1(6): e98. |
[68] |
Harlow J E, Ma X M, Li J, Logan E, Liu Y L, Zhang N, Ma L, Glazier S L, Cormier M M E, Genovese M, Buteau S, Cameron A, Stark J E, Dahn J R. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies[J]. J. Electrochemist. Soc., 2019, 166(13): A3031-3044.
doi: 10.1149/2.0981913jes URL |
[69] |
Attia P M, Grover A, Jin N, Severson K A, Markov T M, Liao Y H, Chen M H, Cheong B, Perkins N, Yang Z, Herring P K, Aykol M, Harris S J, Braatz R D, Ermon S, Chueh W C. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402.
doi: 10.1038/s41586-020-1994-5 URL |
[70] |
Bhowmik A, Vegge T. AI fast track to battery fast charge[J]. Joule, 2020, 4(4): 717-719.
doi: 10.1016/j.joule.2020.03.016 URL |
[71] | Hoffman M W, Shahriari B, De Freitas N. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning[C]//Procedings of the 17th International Conference on Articial Intelligence and Statistics (AISTATs) 2014, Raykjavir, Iceland, JMLR: W&cp, volume 33: 365-374. |
[72] |
Choi Y, Ryu S, Park K, Kim H. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access, 2019, 7: 75143-75152.
doi: 10.1109/ACCESS.2019.2920932 URL |
[73] |
Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J. Power Sources, 2013, 241: 680-689.
doi: 10.1016/j.jpowsour.2013.05.040 URL |
[74] |
Xiong R, Li L L, Li Z R, Yu Q Q, Mu H. An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application[J]. Appl. Energy, 2018, 219: 264-275.
doi: 10.1016/j.apenergy.2018.03.053 URL |
[75] | De Sutter L, Firouz Y, De Hoog J, Omar N, Van Mierlo J. Battery aging assessment and parametric study of lithium-ion batteries by means of a fractional differential model[J]. Electrochemist. Acta, 2019, 305: 24-36. |
[76] |
Feng F, Teng S L, Liu K L, Xie J L, Xie Y, Liu B, Li K. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural- network model[J]. J. Power Sources, 2020, 455: 227935.
doi: 10.1016/j.jpowsour.2020.227935 URL |
[77] |
Chen X, Ye L H, Wang Y, Li X. Beyond expert-level performance prediction for rechargeable batteries by unsupervised machine learning[J]. Adv. Intell. Syst., 2019, 1(8): 1900102.
doi: 10.1002/aisy.201900102 URL |
[78] |
Zhou Z K, Duan B, Kang Y Z, Shang Y L, Cui N X, Chang L, Zhang C H. An efficient screening method for retired lithium-ion batteries based on support vector machine[J]. J. Cleaner Prod., 2020, 267: 121882.
doi: 10.1016/j.jclepro.2020.121882 URL |
[79] | Billy W, W Dhammika W, Shichun Y, Xinhua L. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020: 100016 |
[80] |
Jiao J Y, Lai G M, Zhao L, Lu J Z, Li Q D, Xu X Q, Jiang Y, He Y B, Ouyang C Y, Pan F, Li H, Zheng J X. Self-healing mechanism of lithium in lithium metal[J]. Adv. Sci., 2022, 9(12): 2105574.
doi: 10.1002/advs.202105574 URL |
[81] |
Liang C. A review of the recent progress in battery informatics[J]. NPJ Comput. Mater., 2022, 8(1): 33.
doi: 10.1038/s41524-022-00713-x URL |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 王锋, 程俊. 机器学习加速氧化还原电位和酸度常数计算[J]. 电化学(中英文), 2024, 30(2): 2307181-. |
[4] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[5] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[6] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[7] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[8] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[9] | 李吉利, 李晔飞, 刘智攀. 电化学理论模拟方法的发展及其在铂基燃料电池中的应用[J]. 电化学(中英文), 2022, 28(2): 2108511-. |
[10] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[11] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[12] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[13] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[14] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[15] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||