电化学(中英文) ›› 2022, Vol. 28 ›› Issue (10): 2214012. doi: 10.13208/j.electrochem.2214012
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2022-07-14
修回日期:
2022-07-31
出版日期:
2022-10-28
发布日期:
2022-08-31
Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li*()
Received:
2022-07-14
Revised:
2022-07-31
Published:
2022-10-28
Online:
2022-08-31
Contact:
Tel: +6567904380, E-mail: 摘要:
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。
魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012.
Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production[J]. Journal of Electrochemistry, 2022, 28(10): 2214012.
[1] |
Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
doi: 10.1021/acs.chemrev.9b00248 pmid: 31657904 |
[2] |
Vesborg P C K, Seger B, Chorkendorff I B. Recent development in hydrogen evolution reaction catalysts and their practical implementation[J]. J. Phys. Chem. Lett., 2015, 6(6): 951-957.
doi: 10.1021/acs.jpclett.5b00306 pmid: 26262851 |
[3] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Nörskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
doi: 10.1126/science.aad4998 URL |
[4] |
Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
doi: 10.1039/c4cs00448e pmid: 25886650 |
[5] |
Dubouis N, Grimaud A. The hydrogen evolution reaction: From material to interfacial descriptors[J]. Chem. Sci., 2019, 10(40): 9165-9181.
doi: 10.1039/c9sc03831k pmid: 32015799 |
[6] |
Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Advancing the eletcrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew. Chem. Int. Ed., 2015, 54(1): 52-65.
doi: 10.1002/anie.201407031 pmid: 25384712 |
[7] |
Li Y, Luo Z Y, Ge J J, Liu C P, X W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
doi: 10.13208/j.electrochem.180855 |
[8] |
Leech M C, Lam K. A practical guide to electrosynthesis[J]. Nat. Rev. Chem., 2022, 6(4): 275-286.
doi: 10.1038/s41570-022-00372-y URL |
[9] |
Li G R, Xu H, Lu X F, Feng J X, Tong Y X, Su C Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage[J]. Nanoscale, 2013, 5(10): 4056-4069.
doi: 10.1039/c3nr00607g URL |
[10] |
Liu R, Duay J, Lee S B. Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/poly(3,4-ethylenedioxythiophene) nanowires[J]. ACS Nano, 2011, 5(7): 5608-5619.
doi: 10.1021/nn201106j pmid: 21661749 |
[11] |
Petrii O A. Electrosynthesis of nanostructures and nano-materials[J]. Russ. Chem. Rev., 2015, 84(2): 159-193.
doi: 10.1070/RCR4438 URL |
[12] |
Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides[J]. Chem. Mater., 2000, 12(5): 1195-1204.
doi: 10.1021/cm990447a URL |
[13] |
Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226.
doi: 10.1002/celc.201900675 URL |
[14] |
Liu K W, Zhang C L, Sun Y D, Zhang G H, Shen X C, Zou F, Zhang H C, Wu Z W, Wegener E C, Taubert C J, Miller J T, Peng Z M, Zhu Y. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction[J]. ACS Nano, 2018, 12(1): 158-167.
doi: 10.1021/acsnano.7b04646 pmid: 29211437 |
[15] |
Li Y, Wei X F, Chen L S, Shi J L. Electrocatalytic hydrogen production trilogy[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19550-19571.
doi: 10.1002/anie.202009854 URL |
[16] |
You B, Han G Q, Sun Y J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation[J]. Chem. Commun., 2018, 54(47): 5943-5955.
doi: 10.1039/C8CC01830H URL |
[17] |
Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance[J]. Chem. Rev., 2017, 117(21): 13230-13319.
doi: 10.1021/acs.chemrev.7b00397 pmid: 28991454 |
[18] |
Chen L S, Shi J L. Co-electrolysis toward value-added chemicals[J]. Sci. China Mater., 2022, 65(1): 1-9.
doi: 10.1007/s40843-021-1809-5 URL |
[19] |
Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521.
doi: 10.1002/cssc.202000339 pmid: 32059064 |
[20] | Pletcher D, Walsh F C. Industrial electrochemistry[M]. America: Springer Dordrecht, 1993. |
[21] |
Heard D M, Lennox A J J. Electrode materials in modern organic electrochemistry[J]. Angew. Chem. Int. Ed., 2020, 59(43): 18866-18884.
doi: 10.1002/anie.202005745 URL |
[22] | Izutsu K. Electrochemistry in nonaqueous solutions[M]. America: John Wiley & Sons, Inc., 2002. |
[23] |
Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew. Chem. Int. Ed., 2006, 45(42): 6962-6984.
doi: 10.1002/anie.200503779 URL |
[24] |
Yount J, Piercey D G. Electrochemical synthesis of high-nitrogen materials and energetic materials[J]. Chem. Rev., 2022, 122(9): 8809-8840.
doi: 10.1021/acs.chemrev.1c00935 URL |
[25] |
Jovic V D, Jovic B M, Pavlovic M G. Electrodeposition of Ni, Co and Ni-Co alloy powders[J]. Electrochim. Acta, 2006, 51(25): 5468-5477.
doi: 10.1016/j.electacta.2006.02.022 URL |
[26] |
Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.
doi: 10.1021/jp074464w URL |
[27] |
Mai L Q, Minhas-Khan A, Tian X C, Hercule K M, Zhao Y L, Lin X, Xu X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance[J]. Nat. Commun., 2013, 4: 2923.
doi: 10.1038/ncomms3923 pmid: 24327172 |
[28] |
Ahn S H, Hwang S J, Yoo S J, Choi I, Kim H J, Jang J H, Nam S W, Lim T H, Lim T, Kim S K, Kim J J. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. J. Mater. Chem., 2012, 22(30): 15153-15159.
doi: 10.1039/c2jm31439h URL |
[29] |
Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization—a review[J]. Sci. Technol. Adv. Mater., 2008, 9(4): 043001.
doi: 10.1088/1468-6996/9/4/043001 URL |
[30] |
Lahiri A, Endres F. Review—electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: A comparative review[J]. J. Electrochem. Soc., 2017, 164(9): D597-D612.
doi: 10.1149/2.1011709jes URL |
[31] | Walsh F C, de Leon C P. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology[J]. Trans. Inst. Met., 2014, 92(2): 83-98. |
[32] |
Zheng J X, Kim M S, Tu Z Y, Choudhury S, Tang T, Archer L A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries[J]. Chem. Soc. Rev., 2020, 49(9): 2701-2750.
doi: 10.1039/c9cs00883g pmid: 32232259 |
[33] |
Wu W M, Zhang C S, Hou S G. Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets[J]. J. Mater. Sci., 2017, 52(18): 10649-10660.
doi: 10.1007/s10853-017-1289-x URL |
[34] |
Ambrosi A, Pumera M. Exfoliation of layered materials using electrochemistry[J]. Chem. Soc. Rev., 2018, 47(19): 7213-7224.
doi: 10.1039/c7cs00811b pmid: 30132475 |
[35] |
Yang Y C, Hou H S, Zou G Q, Shi W, Shuai H L, Li J Y, Ji X B. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale, 2019, 11(1): 16-33.
doi: 10.1039/C8NR08227H URL |
[36] |
Zhang Q Y, Mei L, Cao X H, Tang Y X, Zeng Z Y. Intercalation and exfoliation chemistries of transition metal dichalcogenides[J]. J. Mater. Chem. A, 2020, 8(31): 15417-15444.
doi: 10.1039/D0TA03727C URL |
[37] |
Yang S, Zhang P P, Nia A S, Feng X L. Emerging 2D materials produced via electrochemistry[J]. Adv. Mater., 2020, 32(10): 1907857.
doi: 10.1002/adma.201907857 URL |
[38] |
Liu F M, Zhang L, Wang L, Cheng F Y. The electrochemical tuning of transition metal-based materials for electrocatalysis[J]. Electrochem. Energy Rev., 2021, 4(1): 146-168.
doi: 10.1007/s41918-020-00089-w URL |
[39] | Baumgärtner M E, Raub C J. The electrodeposition of platinum and platinum alloys[J]. Platin. Met. Rev., 1988, 32(4): 188-197. |
[40] |
Ring L, Pollet B G, Chatenet M, Abbou S, Küpper K, Schmidt M, Huck M, Gries A, Steinhart M, Schäfer H. From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes[J]. Angew. Chem. Int. Ed., 2019, 58(48): 17383-17392.
doi: 10.1002/anie.201908649 pmid: 31539189 |
[41] | Yang F Z, Xu S K, Yao S B, Chen B Y, Zheng X Q, Zhong X H, Zhou S M. A study on the electrodeposition of palladium and it’s nucleation[J]. J. Electrochem., 1997, (1): 103-108. |
[42] |
Edison T N J I, Atchudan R, Karthik N, Chandrasekaran S, Perumal S, Raja P B, Perumal V, Lee Y R. Deep eutectic solvent assisted electrosynthesis of ruthenium nanoparticles on stainless steel mesh for electrocatalytic hydrogen evolution reaction[J]. Fuel, 2021, 297: 120786.
doi: 10.1016/j.fuel.2021.120786 URL |
[43] |
Wang S J, Zou X L, Lu Y, Rao S C, Xie X L, Pang Z Y, Lu X G, Xu Q, Zhou Z F. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution[J]. Int. J. Hydrog. Energy, 2018, 43(33): 15673-15686.
doi: 10.1016/j.ijhydene.2018.06.188 URL |
[44] |
Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114(21): 11060-11082.
doi: 10.1021/cr300162p pmid: 25300631 |
[45] |
Zhou M, Dick J E, Bard A J. Electrodeposition of isolated platinum atoms and clusters on bismuth-characterization and electrocatalysis[J]. J. Am. Chem. Soc., 2017, 139(48): 17677-17682.
doi: 10.1021/jacs.7b10646 pmid: 29131602 |
[46] |
Zhou M, Bao S J, Bard A J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles[J]. J. Am. Chem. Soc., 2019, 141(18): 7327-7332.
doi: 10.1021/jacs.8b13366 pmid: 31017772 |
[47] |
Stanca S E, Vogt O, Zieger G, Ihring A, Dellith J, Undisz A, Rettenmayr M, Schmidt H. Electrochemical growth mechanism of nanoporous platinum layers[J]. Commun. Chem., 2021, 4(1): 98.
doi: 10.1038/s42004-021-00535-w URL |
[48] |
Dehcheshmeh M S, Kiani A. Synthesis of Pt nano catalyst in the presence of carbon monoxide: superior activity towards hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(43): 23969-23974.
doi: 10.1016/j.ijhydene.2019.07.116 URL |
[49] |
Cheng H E, Li W L, Yang Z P. Enhancement of hydrogen evolution reaction by Pt nanopillar-array electrode in alkaline media and the effect of nanopillar length on the electrode efficiency[J]. Int. J. Hydrog. Energy, 2019, 44(57): 30141-30150.
doi: 10.1016/j.ijhydene.2019.09.188 URL |
[50] |
Brimaud S, Behm R J. Electrodeposition of a Pt monolayer film: Using kinetic limitations for atomic layer epitaxy[J]. J. Am. Chem. Soc., 2013, 135(32): 11716-11719.
doi: 10.1021/ja4051795 pmid: 23909793 |
[51] |
Chen X X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Muhler M, Schuhmann W. Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes[J]. Electrochem. Commun., 2007, 9(6): 1348-1354.
doi: 10.1016/j.elecom.2007.01.034 URL |
[52] |
Hussein H E M, Maurer R J, Amari H, Peters J J P, Meng L C, Beanland R, Newton M E, Macpherson J V. Tracking metal electrodeposition dynamics from nucleation and growth of a single atom to a crystalline nanoparticle[J]. ACS Nano, 2018, 12(7): 7388-7396.
doi: 10.1021/acsnano.8b04089 pmid: 29969230 |
[53] |
Huang K, Shin K, Henkelman G, Crooks R M. Correlating surface structures and electrochemical activity using shape-controlled single-Pt nanoparticles[J]. ACS Nano, 2021, 15(11): 17926-17937.
doi: 10.1021/acsnano.1c06281 URL |
[54] |
Glasscott M W, Dick J E. Fine-tuning porosity and time-resolved observation of the nucleation and growth of single platinum nanoparticles[J]. ACS Nano, 2019, 13(4): 4572-4581.
doi: 10.1021/acsnano.9b00546 pmid: 30790511 |
[55] |
Ye F, Li J J, Wang T T, Liu Y, Wei H J, Li J L, Wang X D. Electrocatalytic properties of platinum catalysts prepared by pulse electrodeposition method using SnO2 as an assisting reagent[J]. J. Phys. Chem. C, 2008, 112(33): 12894-12898.
doi: 10.1021/jp803188s URL |
[56] |
Ohyama J, Sato T, Yamamoto Y, Arai S, Satsuma A. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte[J]. J. Am. Chem. Soc., 2013, 135(21): 8016-8021.
doi: 10.1021/ja4021638 pmid: 23611161 |
[57] | He Y P, Sheng Q L, Zheng J B. Double-template electrosynthesis of platinum nanomaterials for sensing application[J]. Sens. Actuators B Chem., 2012, 166: 89-96. |
[58] |
Li Y J, Zhang H C, Xu T H, Lu Z Y, Wu X C, Wan P B, Sun X M, Jiang L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Adv. Funct. Mater., 2015, 25(11): 1737-1744.
doi: 10.1002/adfm.201404250 URL |
[59] |
Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen E I, Kallio T, Laasonen K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catal., 2017, 7(5): 3121-3130.
doi: 10.1021/acscatal.7b00199 URL |
[60] |
Dudin P V, Snowden M E, Macpherson J V, Unwin P R. Electrochemistry at nanoscale electrodes: Individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires[J]. ACS Nano, 2011, 5(12): 10017-10025.
doi: 10.1021/nn203823f pmid: 22092149 |
[61] |
Ye S H, Luo F Y, Zhang Q L, Zhang P Y, Xu T T, Wang Q, He D S, Guo L C, Zhang Y, He C X, Ouyang X P, Gu M, Liu J H, Sun X L. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction[J]. Energy Environ. Sci., 2019, 12(3): 1000-1007.
doi: 10.1039/C8EE02888E URL |
[62] |
Xu G R, Hui J J, Huang T, Chen Y, Lee J M. Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction[J]. J. Power Sources, 2015, 285: 393-399.
doi: 10.1016/j.jpowsour.2015.03.131 URL |
[63] | Zhang H B, An P F, Zhou W, Guan B Y, Zhang P, Dong J C, Lou X W D. Dynamic traction of latticeconfined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Sci. Adv., 2018, 4(1): eaao-6657. |
[64] |
Wang Y H, Chen L, Yu X M, Wang Y G, Zheng G F. Superb alkaline hydrogen evolution and simultaneous electricity generation by Pt-decorated Ni3N nanosheets[J]. Adv. Energy Mater., 2017, 7(2): 1601390.
doi: 10.1002/aenm.201601390 URL |
[65] |
Bose C S C, Rajeshwar K. Efficient electrocatalyst assemblies for proton and oxygen reduction: The electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles[J]. J. Electroanal. Chem., 1992, 333(1-2): 235-256.
doi: 10.1016/0022-0728(92)80394-J URL |
[66] |
Zhou C F, Liu Z W, Yan Y S, Du X S, Mai Y W, Ringer S. Electro-synthesis of novel nanostructured pedot films and their application as catalyst support[J]. Nanoscale Res. Lett., 2011, 6: 364.
doi: 10.1186/1556-276X-6-364 pmid: 21711871 |
[67] |
Nieminen J J, Hatay I, Ge P Y, Méndez M A, Murtomäki L, Girault H H. Hydrogen evolution catalyzed by electrodeposited nanoparticles at the liquid/liquid interface[J]. Chem. Commun., 2011, 47(19): 5548-5550.
doi: 10.1039/C1CC10637F URL |
[68] |
Aslan E, Patir I H, Ersoz M. Cu nanoparticles electrodeposited at liquid-liquid interfaces: A highly efficient catalyst for the hydrogen evolution reaction[J]. Chem. Eur. J., 2015, 21(12): 4585-4589.
doi: 10.1002/chem.201406615 URL |
[69] |
Xiao H, Zhang J J, Zhao M, Ma J C, Li Y, Hu T J, Zheng Z F, Jia J F, Wu H S. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction[J]. J. Power Sources, 2020, 451: 227770.
doi: 10.1016/j.jpowsour.2020.227770 URL |
[70] |
Xiao H, Xue S F, Zhang J J, Zhao M, Ma J C, Chen S, Zheng Z F, Jia J F, Wu H S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation[J]. Chem. Eng. J., 2021, 408: 127271.
doi: 10.1016/j.cej.2020.127271 URL |
[71] |
Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt[J]. Adv. Funct. Mater., 2022, 32(20): 2112207.
doi: 10.1002/adfm.202112207 URL |
[72] |
Cao Z M, Chen Q L, Zhang J W, Li H Q, Jiang Y Q, Shen S Y, Fu G, Lu B A, Xie Z X, Zheng L S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nat. Commun., 2017, 8: 15131.
doi: 10.1038/ncomms15131 pmid: 28436494 |
[73] | Isarain-Chávez E, Baró M D, Alcantara C, Pané S, Sort J, Pellicer E. Micelle-assisted electrodeposition of mesoporous Fe-Pt smooth thin films and their electrocatalytic activity towards the hydrogen evolution reaction[J]. Chem-SusChem, 2018, 11(2): 367-375. |
[74] | Palaniappan R, Ingram D C, Botte G G. Hydrogen evolution reaction kinetics on electrodeposited Pt-M (M = Ir, Ru, Rh, and Ni) cathodes for ammonia electrolysis[J]. J. Electrochem. Soc., 2014, 161(1): E12-E22. |
[75] |
Xu W, Du D W, Lan R, Humphreys J, Miller D N, Walker M, Wu Z C, Irvine J T S, Tao S W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. App. Cat. B Environ., 2018, 237: 1101-1109.
doi: 10.1016/j.apcatb.2016.11.003 URL |
[76] |
Cherevko S, Kulyk N, Chung C H. Nanoporous Pt@AuxCu100-x by hydrogen evolution assisted electrodeposition of AuxCu100-x and galvanic replacement of Cu with Pt: Electrocatalytic properties[J]. Langmuir, 2012, 28(6): 3306-3315.
doi: 10.1021/la203625e pmid: 22256895 |
[77] |
Eiler K, Suriñach S, Sort J, Pellicer E. Mesoporous Ni-rich Ni-Pt thin films: Electrodeposition, characterization and performance toward hydrogen evolution reaction in acidic media[J]. App. Cat. B Environ., 2020, 265: 118597.
doi: 10.1016/j.apcatb.2020.118597 URL |
[78] |
Xu L, Cao L L, Xu W, Pei Z H. One-step electrosynthesis of NiFe-NF electrodes for highly efficient overall water splitting[J]. Appl. Surf. Sci., 2020, 503: 144122.
doi: 10.1016/j.apsusc.2019.144122 URL |
[79] |
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10: 2650.
doi: 10.1038/s41467-019-10303-z pmid: 31201304 |
[80] |
Lee J K, Yi Y, Lee H J, Uhm S, Lee J. Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction[J]. Catal. Today, 2009, 146(1-2): 188-191.
doi: 10.1016/j.cattod.2008.12.007 URL |
[81] |
Shao Q, Wang Y, Yang S Z, Lu K Y, Zhang Y, Tang C Y, Song J, Feng Y G, Xiong L K, Peng Y, Li Y F, Xin H L L, Huang X Q. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis[J]. ACS Nano, 2018, 12(11): 11625-11631.
doi: 10.1021/acsnano.8b06896 pmid: 30481970 |
[82] |
Wen X D, Yang X Y, Li M, Bai L, Guan J Q. Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst[J]. Electrochim. Acta, 2019, 296: 830-841.
doi: 10.1016/j.electacta.2018.11.129 URL |
[83] | Chang T Y, Zhang B H, Cong W B, Luo Y. Study on hydrogen evolution performance of nickel-tin electrode[J]. J. Electrochem., 2002, (3): 343-347. |
[84] | Lu S G, Li Q, Liu Q G, Lu C, Dang B, Yang H X. The hydrogen evolution reaction on the hydrogen storage alloy electrode[J]. J. Electrochem., 1998, (3): 265-272. |
[85] | Yu W Z, Ma J, Chu Y M, Zhu H Z, Wang H J, Liu S C. Hydrogen evolution reaction on nanocrystalline Co-Mo/Ni composite-coated electrodes[J]. J. Electrochem., 1996, (1): 47-53. |
[86] | Wu Z X, Wang J, Guo J P, Zhu J, Wang D L. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. J. Electrochem., 2016, 22(2): 192-204. |
[87] |
Ding L, Li K, Xie Z Q, Yang G Q, Yu S L, Wang W T, Yu H R, Baxter J, Meyer H M, Cullen D A, Zhang F Y. Constructing ultrathin W-doped nife nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 20070-20080.
doi: 10.1021/acsami.1c01815 URL |
[88] |
Zhang L, Liu B R, Zhang N, Ma M M. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media[J]. Nano Res., 2018, 11(1): 323-333.
doi: 10.1007/s12274-017-1634-z URL |
[89] |
Xiao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ. Sci., 2014, 7(8): 2624-2629.
doi: 10.1039/C4EE00957F URL |
[90] |
Lu Z P, Sepunaru L. Electrodeposition of iron phosphide film for hydrogen evolution reaction[J]. Electrochim. Acta, 2020, 363: 137167.
doi: 10.1016/j.electacta.2020.137167 URL |
[91] |
Xing J H, Li H, Cheng M M C, Geyer S M, Ng K Y S. Electro-synthesis of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. J. Mater. Chem. A, 2016, 4(36): 13866-13873.
doi: 10.1039/C6TA05952J URL |
[92] |
Chen M X, Qi J, Zhang W, Cao R. Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution[J]. Chem. Commun., 2017, 53(40): 5507-5510.
doi: 10.1039/C7CC01584D URL |
[93] |
Lin C Y, Huang S C, Lin Y G, Hsu L C, Yi C T. Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming[J]. Appl. Catal. B Environ., 2021, 296: 120351.
doi: 10.1016/j.apcatb.2021.120351 URL |
[94] |
Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angew. Chem. Int. Ed., 2015, 54(21): 6251-6254.
doi: 10.1002/anie.201501616 pmid: 25900260 |
[95] |
Jiang N, You B, Boonstra R, Rodriguez I M T, Sun Y J. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts[J]. ACS Energy Lett., 2016, 1(2): 386-390.
doi: 10.1021/acsenergylett.6b00214 URL |
[96] |
Aliyev A S, Elrouby M, Cafarova S F. Electrochemical synthesis of molybdenum sulfide semiconductor[J]. Mater. Sci. Semicond. Process., 2015, 32: 31-39.
doi: 10.1016/j.mssp.2015.01.006 URL |
[97] |
Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V K, Ajayan P M, Shaijumon M M. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chem. Commun., 2015, 51(29): 6293-6296.
doi: 10.1039/C4CC09826A URL |
[98] |
Cao Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts[J]. ACS Nano, 2021, 15(7): 11014-11039.
doi: 10.1021/acsnano.1c01879 URL |
[99] |
Murugesan S, Akkineni A, Chou B P, Glaz M S, Bout D A V, Stevenson K J. Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications[J]. ACS Nano, 2013, 7(9): 8199-8205.
doi: 10.1021/nn4036624 pmid: 23962095 |
[100] | Gao Y, Zhou J, Liu Y W, Chen S L. Hydrogen evolution properties on individual MoS2 nanosheets[J]. J. Ele-ctrochem., 2016, 22(6): 590-595. |
[101] |
Tan S M, Pumera M. Bottom-up electrosynthesis of highly active tungsten sulfide (WS3-x) films for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2016, 8(6): 3948-3957.
doi: 10.1021/acsami.5b11109 URL |
[102] |
Tan S M, Pumera M. Electrosynthesis of bifunctional WS3-x/reduced graphene oxide hybrid for hydrogen evolution reaction and oxygen reduction reaction electrocatalysis[J]. Chem. Euro. J., 2017, 23(35): 8510-8519.
doi: 10.1002/chem.201701722 URL |
[103] |
Jo S, Lee K B, Sohn J I. Direct electrosynthesis of selective transition-metal chalcogenides as functional catalysts with a tunable activity for efficient water electrolysis[J]. ACS Sustain. Chem. Eng., 2021, 9(44): 14911-14917.
doi: 10.1021/acssuschemeng.1c05130 URL |
[104] |
Chen W S, Gu J J, Liu Q L, Yang M Z, Zhan C, Zang X N, Pham T A, Liu G X, Zhang W, Zhang D, Dunn B, Wang Y M. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance[J]. Nat. Nanotechnol., 2022, 17(2): 153-158.
doi: 10.1038/s41565-021-01020-0 URL |
[105] |
Wang H T, Lu Z Y, Kong D S, Sun J, Hymel T M, Cui Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution[J]. ACS Nano, 2014, 8(5): 4940-4947.
doi: 10.1021/nn500959v URL |
[106] |
Michalsky R, Zhang Y J, Peterson A A. Trends in the hydrogen evolution activity of metal carbide catalysts[J]. ACS Catal., 2014, 4(5): 1274-1278.
doi: 10.1021/cs500056u URL |
[107] |
Fan X J, Peng Z W, Ye R Q, Zhou H Q, Guo X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nano-ribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions[J]. ACS Nano, 2015, 9(7): 7407-7418.
doi: 10.1021/acsnano.5b02420 URL |
[108] |
Jiang R, Fan J H, Hu L Y, Dou Y P, Mao X H, Wang D H. Electrochemically synthesized N-doped molybdenum carbide nanoparticles for efficient catalysis of hydrogen evolution reaction[J]. Electrochim. Acta, 2018, 261: 578-587.
doi: 10.1016/j.electacta.2017.12.174 URL |
[109] |
Fan J H, Dou Y P, Jiang R, Du K F, Deng B W, Wang D H. Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation[J]. Int. J. Hydrog. Energy, 2021, 46(28): 14932-14943.
doi: 10.1016/j.ijhydene.2020.07.193 URL |
[110] |
Malakzadeh M, Raoof J B, Ghafarnejad A, Ojani R. In-situ electrosynthesis Cu-PtBTC MOF-derived nano-composite modified glassy carbon electrode for highly performance electrocatalysis of hydrogen evolution reaction[J]. J. Electroanal. Chem., 2021, 900: 115716.
doi: 10.1016/j.jelechem.2021.115716 URL |
[111] |
Varsha M V, Nageswaran G. Review—direct electrochemical synthesis of metal organic frameworks[J]. J. Electrochem. Soc., 2020, 167(15): 155527.
doi: 10.1149/1945-7111/abc6c6 URL |
[112] |
Babar P T, Lokhande A C, Jo E, Pawar B S, Gang M G, Pawar S M, Kim J H. Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting[J]. J. Ind. Eng. Chem., 2019, 70: 116-123.
doi: 10.1016/j.jiec.2018.09.041 URL |
[113] |
Liu L, Hai Y, Gong Y. A facile electrosynthesis of terephthalate (tp)-based metal-organic framework, Ni3(OH)2(H2O)2(tp)2 with superior catalytic activity for hydrogen evolution reaction[J]. Eur. J. Inorg. Chem., 2020, 2020(44): 4215-4224.
doi: 10.1002/ejic.202000729 URL |
[114] |
Liberman I, Ifraemov R, Shimoni R, Hod I. Localized electrosynthesis and subsequent electrochemical mapping of catalytically active metal-organic frameworks[J]. Adv. Funct. Mater., 2022, 32(19): 2112517.
doi: 10.1002/adfm.202112517 URL |
[115] |
Zhou K L, Wang Z L, Han C B, Ke X X, Wang C H, Jin Y H, Zhang Q Q, Liu J B, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 3783.
doi: 10.1038/s41467-021-24079-8 pmid: 34145269 |
[116] |
Tiwari J N, Sultan S, Myung C W, Yoon T, Li N N, Ha M R, Harzandi A M, Park H J, Kim D Y, Chandrasekaran S S, Lee W G, Vij V, Kang H J, Shin T J, Shin H S, Lee G, Lee Z, Kim K S. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nat. Energy, 2018, 3(9): 773-782.
doi: 10.1038/s41560-018-0209-x URL |
[117] |
Chia X Y, Sutrisnoh N A A, Pumera M. Tunable Pt-MoSx hybrid catalysts for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2018, 10(10): 8702-8711.
doi: 10.1021/acsami.7b19346 URL |
[118] |
Jiang R, Deng B W, Pi L, Hu L Y, Chen D, Dou Y P, Mao X H, Wang D H. Molten electrolyte-modulated electrosynthesis of multi-anion Mo-based lamellar nano-hybrids derived from natural minerals for boosting hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2020, 12(52): 57870-57880.
doi: 10.1021/acsami.0c17137 URL |
[119] |
Song F Z, Li W, Han G Q, Sun Y J. Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution[J]. ACS Appl. Energy Mater., 2018, 1(1): 3-8.
doi: 10.1021/acsaem.7b00005 URL |
[120] |
Chen Z F, Ye S R, Wilson A R, Ha Y C, Wiley B J. Optically transparent hydrogen evolution catalysts made from networks of copper-platinum core-shell nanowires[J]. Energy Environ. Sci., 2014, 7(4): 1461-1467.
doi: 10.1039/C4EE00211C URL |
[121] |
Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
doi: 10.1126/science.1211934 pmid: 22144621 |
[122] |
Li L, Wang B, Zhang G W, Yang G, Yang T, Yang S, Yang S C. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability[J]. Adv. Energy Mater., 2020, 10(30): 2001600.
doi: 10.1002/aenm.202001600 URL |
[123] |
Park J, Kim H, Jin K, Lee B J, Park Y S, Kim H, Park I, Yang K D, Jeong H Y, Kim J, Hong K T, Jang H W, Kang K, Nam K T. A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency[J]. J. Am. Chem. Soc., 2014, 136(11): 4201-4211.
doi: 10.1021/ja410223j pmid: 24571280 |
[124] |
Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. Electrochemical tuning of vertically aligned MoS2 nano-films and its application in improving hydrogen evolution reaction[J]. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(49): 19701-19706.
doi: 10.1073/pnas.1316792110 URL |
[125] |
Meng J, Liu F M, Yan Z H, Cheng F Y, Li F J, Chen J. Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn-air batteries[J]. Inorg. Chem. Front., 2018, 5(9): 2167-2173.
doi: 10.1039/C8QI00404H URL |
[126] |
Wang H T, Xu S C, Tsai C, Li Y Z, Liu C, Zhao J, Liu Y Y, Yuan H Y, Abild-Pedersen F, Prinz F B, Nörskov J K, Cui Y. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036.
pmid: 27885028 |
[127] |
Tang C, Zhang R, Lu W B, Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst[J]. Angew. Chem. Int. Ed., 2017, 56(3): 842-846.
doi: 10.1002/anie.201608899 URL |
[128] | Liu H, Liu Y, Li M, Liu X, Luo J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production[J]. Mater.Today Adv., 2020, 7: 100083. |
[129] | Wang J M, Ma X, Liu T T, Liu D N, Hao S, Du G, Kong R M, Asiri A M, Sun X P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production[J]. Mater. Today Energy, 2017, 3: 9-14. |
[130] |
Zhang J Y, Wang H M, Tian Y F, Yan Y, Xue Q, He T, Liu H F, Wang C D, Chen Y, Xia B Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7649-7653.
doi: 10.1002/anie.201803543 URL |
[131] |
Li Y P, Zhang J H, Liu Y, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Sci. Adv., 2020, 6(44): eabb4197.
doi: 10.1126/sciadv.abb4197 URL |
[132] |
Qian Q Z, Zhang J H, Li J M, Li Y P, Jin X, Zhu Y, Liu Y, Li Z Y, El-Harairy A, Xiao C, Zhang G Q, Xie Y. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis[J]. Angew. Chem. Int. Ed., 2021, 60(11): 5984-5993.
doi: 10.1002/anie.202014362 pmid: 33306263 |
[133] |
Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhang G Q. Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production[J]. Adv. Funct. Mater., 2021, 31(35): 2103673.
doi: 10.1002/adfm.202103673 URL |
[134] |
Wang Z Y, Xu L, Huang F Z, Qu L B, Li J T, Owusu K A, Liu Z, Lin Z F, Xiang B H, Liu X, Zhao K N, Liao X B, Yang W, Cheng Y B, Mai L Q. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production[J]. Adv. Energy Mater., 2019, 9(21): 1900390.
doi: 10.1002/aenm.201900390 URL |
[135] |
Sun F, Qin J S, Wang Z Y, Yu M Z, Wu X H, Sun X M, Qiu J S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation[J]. Nat. Commun., 2021, 12(1): 4182.
doi: 10.1038/s41467-021-24529-3 pmid: 34234135 |
[136] |
Yu Q P, Chi J Q, Liu G S, Wang X Y, Liu X B, Li Z J, Deng Y, Wang X P, Wang L. Dual-strategy of hetero-engineering and cation doping to boost energy-saving hydrogen production via hydrazine-assisted seawater electrolysis[J]. Sci. China Mater., 2022, 65(6): 1539-1549.
doi: 10.1007/s40843-021-1928-7 URL |
[137] |
Yu Z P, Xu J Y, Meng L J, Liu L F. Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution[J]. J. Mater. Chem. A, 2021, 9(39): 22248-22253.
doi: 10.1039/D1TA05703K URL |
[138] |
Deng K, Mao Q Q, Wang W X, Wang P, Wang Z Q, Xu Y, Li X N, Wang H J, Wang L. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting[J]. App. Catal. B Environ., 2022, 310: 121338.
doi: 10.1016/j.apcatb.2022.121338 URL |
[139] |
Liu Y, Zhang J H, Li Y P, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production[J]. Nat. Commun., 2020, 11(1): 1853.
doi: 10.1038/s41467-020-15563-8 pmid: 32296070 |
[140] | Liu X J, He J, Zhao S Z, Liu Y P, Zhao Z, Luo J, Hu G Z, Sun X M, Ding Y. Self-powered H2 production with bifunctional hydrazine as sole consumable[J]. Nat. Com-mun., 2018, 9: 4365. |
[141] |
Liu T T, Liu D N, Qu F L, Wang D X, Zhang L, Ge R X, Hao S, Ma Y J, Du G, Asiri A M, Chen L, Sun X P. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter[J]. Adv. Energy Mater., 2017, 7(15): 1700020.
doi: 10.1002/aenm.201700020 URL |
[142] |
Yu Z Y, Lang C C, Gao M R, Chen Y, Fu Q Q, Duan Y, Yu S H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis[J]. Energy Environ. Sci., 2018, 11(7): 1890-1897.
doi: 10.1039/C8EE00521D URL |
[143] |
Zhang L S, Wang L P, Lin H P, Liu Y X, Ye J Y, Wen Y Z, Chen A, Wang L, Ni F L, Zhou Z Y, Sun S G, Li Y Y, Zhang B, Peng H S. A lattice-oxygen-involved reaction pathway to boost urea oxidation[J]. Angew. Chem. Int. Ed., 2019, 58(47): 16820-16825.
doi: 10.1002/anie.201909832 pmid: 31535447 |
[144] | Wang C, Lu H L, Mao Z Y, Yan C L, Shen G Z, Wang X F. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis[J]. Adv. Funct. Mater., 2020, 30(21): 20000556. |
[145] |
Hu S N, Wang S Q, Feng C Q, Wu H M, Zhang J J, Mei H. Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation[J]. ACS Sustainable Chem. Eng., 2020, 8(19): 7414-7422.
doi: 10.1021/acssuschemeng.0c01450 URL |
[146] |
Chen N, Du Y X, Zhang G, Lu W T, Cao F F. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media[J]. Nano Energy, 2021, 81: 105605.
doi: 10.1016/j.nanoen.2020.105605 URL |
[147] |
Xu W, Lan R, Du D W, Humphreys J, Walker M, Wu Z C, Wang H T, Tao S W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia[J]. App. Cat. B Environ., 2017, 218: 470-479.
doi: 10.1016/j.apcatb.2017.07.005 URL |
[148] |
Wu F C, Ou G, Yang J, Li H N, Gao Y X, Chen F M, Wang Y, Shi Y M. Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting[J]. Chem. Commun., 2019, 55(46): 6555-6558.
doi: 10.1039/C9CC02507C URL |
[149] |
Xu Q L, Qian G F, Yin S B, Yu C, Chen W, Yu T Q, Luo L, Xia Y J, Tsiakaras P. Design and synthesis of highly performing bifunctional Ni-NiO-MoNi hybrid catalysts for enhanced urea oxidation and hydrogen evolution reactions[J]. ACS Sustainable Chem. Eng., 2020, 8(18): 7174-7181.
doi: 10.1021/acssuschemeng.0c01637 URL |
[150] |
Wu Y T, Wang H, Ren J W, Xu X, Wang X Y, Wang R F. Electrocatalyst based on Ni2P nanoparticles and NiCoP nanosheets for efficient hydrogen evolution from urea wastewater[J]. J. Colloid Interface Sci., 2022, 608: 2932-2941.
doi: 10.1016/j.jcis.2021.11.022 URL |
[151] |
Sacré N, Duca M, Garbarino S, Imbeault R, Wang A, Youssef A H, Galipaud J, Hufnagel G, Ruediger A, Roué L, Guay D. Tuning Pt-Ir interactions for NH3 electrocatalysis[J]. ACS Catal., 2018, 8(3): 2508-2518.
doi: 10.1021/acscatal.7b02942 URL |
[152] |
Zhou Y F, Zhang G Q, Yu M C, Wang X J, Lv J L, Yang F L. Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis[J]. ACS Sustain. Chem. Eng., 2018, 6(7): 8437-8446.
doi: 10.1021/acssuschemeng.8b00586 URL |
[153] |
Gwak J, Choun M, Lee J. Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production[J]. ChemSusChem, 2016, 9(4): 403-408.
doi: 10.1002/cssc.201501046 pmid: 26530809 |
[154] |
Sun H Y, Xu G R, Li F M, Hong Q L, Jin P J, Chen P, Chen Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts[J]. J. Energy Chem., 2020, 47: 234-240.
doi: 10.1016/j.jechem.2020.01.035 URL |
[155] |
Xue Q, Zhao Y, Zhu J Y, Ding Y, Wang T J, Sun H Y, Li F M, Chen P, Jin P J, Yin S B, Chen Y. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis[J]. J. Mater. Chem. A, 2021, 9(13): 8444-8451.
doi: 10.1039/D1TA00426C URL |
[156] |
Shilpa N, Pandikassala A, Krishnaraj P, Walko P S, Devi R N, Kurungot S. Co-Ni layered double hydroxide for the electrocatalytic oxidation of organic molecules: An approach to lowering the overall cell voltage for the water splitting process[J]. ACS Appl. Mater. Interfaces, 2022, 14(14): 16222-16232.
doi: 10.1021/acsami.2c00982 URL |
[157] | Wei J C, Shi L, Wu X. Simultaneous hydrogen and (NH4)2SO4 productions from desulfurization wastewater electrolysis using MEA electrolyser[J]. J. Electrochem., 2022, 28(5): 4-12. |
[158] | Miller H A, Lavacchi A, Vizza F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Curr. Opin. Electrochem., 2020, 21: 140-145. |
[159] | Arshad F, Ul-Haq T, Hiussain I, Sher F. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production[J]. ACS Appl. Mater. Interfaces, 2021, 4(9): 8685-8701. |
[160] |
Coutanceau C, Baranton S. Electrochemical conversion of alcohols for hydrogen production: A short overview[J]. WIREs Energy Environ., 2016, 5(4): 388-400.
doi: 10.1002/wene.193 URL |
[161] |
Wu T X, Zhu X G, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution[J]. Nano Res., 2018, 11(2): 1004-1017.
doi: 10.1007/s12274-017-1714-0 URL |
[162] |
Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Lavacchi A, Marchionni A, Vizza F, Shen P K. Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis[J]. ChemSusChem, 2010, 3(7): 851-855.
doi: 10.1002/cssc.201000103 pmid: 20572287 |
[163] |
Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5: 4036.
doi: 10.1038/ncomms5036 pmid: 24892771 |
[164] |
Miller H A, Bellini M, Vizza F, Hasenöhrl C, Tilley R D. Carbon supported Au-Pd core-shell nanoparticles for hydrogen production by alcohol electroreforming[J]. Catal. Sci. Technol., 2016, 6(18): 6870-6878.
doi: 10.1039/C6CY00720A URL |
[165] |
Zhao X J, Dai L, Qin Q, Pei F, Hu C Y, Zheng N F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol[J]. Small, 2017, 13(12): 1602970.
doi: 10.1002/smll.201602970 URL |
[166] |
Dai L, Qin Q, Zhao X J, Xu C F, Hu C Y, Mo S G, Wang Y O, Lin S C, Tang Z C, Zheng N F. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst[J]. ACS Cent. Sci., 2016, 2(8): 538-544.
doi: 10.1021/acscentsci.6b00164 URL |
[167] |
Zhou C H C, Beltramini J N, Fan Y X, Lu G Q M. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem. Soc. Rev., 2008, 37(3): 527-549.
doi: 10.1039/B707343G URL |
[168] |
Lam C H, Bloomfield A J, Anastas P T. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst[J]. Green Chem., 2017, 19(8): 1958-1968.
doi: 10.1039/C7GC00371D URL |
[169] |
Li Y, Wei X F, Chen L S, Shi J L, He M Y. Nickel-moly-bdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nat. Commun., 2019, 10: 5335.
doi: 10.1038/s41467-019-13375-z URL |
[170] |
Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol[J]. Adv. Funct. Mater., 2017, 27(46): 1704169.
doi: 10.1002/adfm.201704169 URL |
[171] | Si D, Xiong B Y, Chen L S, Shi J L. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution[J]. Chem. Catal., 2021, 1(4): 941-955. |
[172] |
Liu W J, Xu Z R, Zhao D T, Pan X Q, Li H C, Hu X, Fan Z Y, Wang W K, Zhao G H, Jin S, Huber G W, Yu H Q. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis[J]. Nat. Commun., 2020, 11(1): 265.
doi: 10.1038/s41467-019-14157-3 URL |
[173] |
Lin C, Zhang P J, Wang S Y, Zhou Q L, Na B, Li H Q, Tian J Y, Zhang Y, Deng C, Meng L Q, Wu J X, Liu C Z, Hu J Y, Zhang L M. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. J. Alloys Compd., 2020, 823: 153784.
doi: 10.1016/j.jallcom.2020.153784 URL |
[174] |
Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation[J]. Angew. Chem. Int. Ed., 2021, 60(37): 20535-20542.
doi: 10.1002/anie.202108955 URL |
[175] |
Huang Y, Chong X D, Liu C B, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13163-13166.
doi: 10.1002/anie.201807717 pmid: 30118157 |
[176] |
Fu N K, Sauer G S, Saha A, Loo A, Lin S. Metal-catalyzed electrochemical diazidation of alkenes[J]. Science, 2017, 357(6351): 575-579.
doi: 10.1126/science.aan6206 pmid: 28798126 |
[177] |
Sauermann N, Mei R H, Ackermann L. Electrochemical C-H amination by cobalt catalysis in a renewable solvent[J]. Angew. Chem. Int. Ed., 2018, 57(18): 5090-5094.
doi: 10.1002/anie.201802206 pmid: 29509336 |
[178] |
Wen Q L, Lin Y, Yang Y, Gao R J, Ouyang N Q, Ding D F, Liu Y W, Zhai T Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation[J]. ACS Nano, 2022, 16(6): 9572-9582.
doi: 10.1021/acsnano.2c02838 URL |
[179] |
You B, Jiang N, Liu X, Sun Y J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst[J]. Angew. Chem. Int. Ed., 2016, 55(34): 9913-9917.
doi: 10.1002/anie.201603798 pmid: 27417546 |
[180] |
You B, Liu X, Jiang N, Sun Y J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. J. Am. Chem. Soc., 2016, 138(41): 13639-13646.
doi: 10.1021/jacs.6b07127 pmid: 27652996 |
[181] |
Mika L T, Cséfalvay E, Németh A. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability[J]. Chem. Rev., 2018, 118(2): 505-613.
doi: 10.1021/acs.chemrev.7b00395 pmid: 29155579 |
[182] |
Zhang Z H, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chem. Soc. Rev., 2018, 47(4): 1351-1390.
doi: 10.1039/c7cs00213k pmid: 29297525 |
[183] |
Weber R S. Effective use of renewable electricity for making renewable fuels and chemicals[J]. ACS Catal., 2019, 9(2): 946-950.
doi: 10.1021/acscatal.8b04143 URL |
[184] |
Pasta M, La Mantia F, Cui Y. Mechanism of glucose electrochemical oxidation on gold surface[J]. Electro-chim. Acta, 2010, 55(20): 5561-5568.
doi: 10.1016/j.electacta.2010.04.069 URL |
[185] |
Cui H F, Ye J S, Liu X, Zhang W D, Sheu F S. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: A strong electrocatalyst for glucose oxidation[J]. Nanotechnology, 2006, 17(9): 2334-2339.
doi: 10.1088/0957-4484/17/9/043 URL |
[186] |
Zakrzewska M E, Bogel-Lukasik E, Bogel-Lukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block[J]. Chem. Rev., 2011, 111(2): 397-417.
doi: 10.1021/cr100171a URL |
[187] |
Moreau C, Belgacem M N, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers[J]. Top. Catal., 2004, 27(1-4): 11-30.
doi: 10.1023/B:TOCA.0000013537.13540.0e URL |
[188] |
Perry S C, Pangotra D, Vieira L, Csepei L I, Sieber V, Wang L, Walsh F C. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nat. Rev. Chem., 2019, 3(7): 442-458.
doi: 10.1038/s41570-019-0110-6 URL |
[189] |
Shi X J, Siahrostami S, Li G L, Zhang Y R, Chakthranont P, Studt F, Jaramillo T F, Zheng X L, Nörskov J K. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide[J]. Nat. Commun., 2017, 8: 701.
doi: 10.1038/s41467-017-00585-6 pmid: 28951571 |
[190] |
Fuku K, Sayama K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode[J]. Chem. Commun., 2016, 52(31): 5406-5409.
doi: 10.1039/C6CC01605G URL |
[191] |
Kelly S R, Shi X J, Back S, Vallez L, Park S Y, Siahro-stami S, Zheng X L, Nørskov J K. ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide[J]. ACS Catal., 2019, 9(5): 4593-4599.
doi: 10.1021/acscatal.8b04873 |
[192] |
Izgorodin A, Izgorodina E, MacFarlane D R. Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst[J]. Energy Environ. Sci., 2012, 5(11): 9496-9501.
doi: 10.1039/c2ee21832a URL |
[193] |
Wei J Q, Zhong L X, Xia H R, Lü Z S, Diao C Z, Zhang W, Li X, Du Y H, Xi S B, Salanne M, Chen X D, Li S Z. Metal-ion oligomerization inside electrified carbon micropores and its effect on capacitive charge storage[J]. Adv. Mater., 2022, 34(4): 2107439.
doi: 10.1002/adma.202107439 URL |
[194] |
Li Y H, Ozden A, Leow W R, Ou P F, Huang J N E, Wang Y H, Bertens K, Xu Y, Liu Y, Roy C, Jiang H, Sinton D, Li C Z, Sargent E H. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water[J]. Nat. Catal., 2022, 5(3): 185-192.
doi: 10.1038/s41929-022-00749-8 URL |
[195] | Wang Y T, Li T L, Yu Y F, Zhang B. Electrochemical synthesis of nitric acid from nitrogen oxidation[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202115409. |
[196] |
Guo Y, Zhang S C, Zhang R, Wang D H, Zhu D M, Wang X W, Xiao D W, Li N, Zhao Y W, Huang Z D, Xu W J, Chen S M, Song L, Fan J, Chen Q, Zhi C Y. Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets[J]. ACS Nano, 2021, 16(1): 655-663.
doi: 10.1021/acsnano.1c08109 URL |
[197] |
Jeanmairet G, Rotenberg B, Salanne M. Microscopic simulations of electrochemical double-layer capacitors[J]. Chem. Rev., 2022, 122(12): 10860-10898.
doi: 10.1021/acs.chemrev.1c00925 pmid: 35389636 |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 李子萌, 李章健, 方萍, 梅天胜. 电化学促进的镍催化的α-氰基乙酸酯的α-芳基化反应[J]. 电化学(中英文), 2024, 30(5): 2313004-. |
[4] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[5] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[8] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[9] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[10] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[11] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[12] | 甘团杰, 武建平, 刘石, 区文俊, 凌彬, 康雄武. 低结晶度AuPt-Ru/CNTs合金异质结作为高效多功能电催化剂[J]. 电化学(中英文), 2022, 28(8): 2201241-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[15] | 张丽桦, 揣宏媛, 刘海, 范群, 况思宇, 张生, 马新宾. 尖晶石钴氧化物的晶面调控与析氧活性研究[J]. 电化学(中英文), 2022, 28(2): 2108481-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||