[1] |
Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 43: 33-39.
doi: 10.1016/j.jechem.2019.07.015
URL
|
[2] |
Han S H, Liu H M, Chen P, Jiang J X, Chen Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv. Energy Mater., 2018, 8(24): 1801326.
doi: 10.1002/aenm.201801326
URL
|
[3] |
Zhuang Z H, Chen W. Application of atomically precise metal nanoclusters in electrocatalysis[J]. J. Electrochem., 2021, 27(2): 125-143.
|
[4] |
Tang T, Jiang W J, Niu S, Hu J S. Design strategies toward highly active electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2018, 24(5): 409-426.
|
[5] |
Wang K L, Wang F, Zhao Y F, Zhang W Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. J. Energy Chem., 2021, 52: 251-261.
doi: 10.1016/j.jechem.2020.04.056
URL
|
[6] |
Yu Z Y, Huang R, Liu J, Li G, Song Q T, Sun S G. Preparation of PdCoIr tetrahedron nanocatalysts and its performance toward ethanol oxidation reaction[J]. J. Electrochem., 2021, 27(1): 63-75.
|
[7] |
Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
|
[8] |
Papaefthimiou V, Diebold M, Ulhaq-Bouillet C, Doh W H, Blume R, Zafeiratos S, Savinova E R. Potential-induced segregation phenomena in bimetallic PtAu nanoparticles: An in-situ near-ambient-pressure photoelectron spectros-copy study[J]. ChemElectroChem, 2015, 2(10): 1519-1526.
doi: 10.1002/celc.201500188
URL
|
[9] |
Sulaiman J E, Zhu S Q, Xing Z L, Chang Q W, Shao M H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction[J]. ACS Catalysis, 2017, 7(8): 5134-5141.
doi: 10.1021/acscatal.7b01435
URL
|
[10] |
Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin-Borkowski R E, Strasser P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles[J]. Angew. Chem. Int. Ed., 2017, 56(23): 6533-6538.
doi: 10.1002/anie.201702332
pmid: 28455907
|
[11] |
Zou J S, Wu M, Ning S L, Huang L, Kang X W, Chen S W. Ru@Pt core-shell nanoparticles: impact of the atomic ordering of the Ru metal core on the electrocatalytic activity of the Pt Shell[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 9007-9016.
doi: 10.1021/acssuschemeng.9b01270
URL
|
[12] |
Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009, 8(4): 325-330.
doi: 10.1038/nmat2359
pmid: 19169248
|
[13] |
Wei Y C, Liu C W, Wang K W. Improvement of oxygen reduction reaction and methanol tolerance characteristics for PdCo electrocatalysts by Au alloying and Co treatment[J]. Chem. Commun., 2011, 47(43): 11927-11929.
doi: 10.1039/c1cc15110j
URL
|
[14] |
Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(shell) electrocatalyst[J]. J. Am. Chem. Soc., 2019, 141(24): 9629-9636.
doi: 10.1021/jacs.9b03474
URL
|
[15] |
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10: 2650.
doi: 10.1038/s41467-019-10303-z
pmid: 31201304
|
[16] |
Guo Z W, Kang X W, Zheng X S, Huang J, Chen S W. PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy[J]. J. Catal., 2019, 374: 101-109.
doi: 10.1016/j.jcat.2019.04.027
URL
|
[17] |
Zhang X, Luo Z M, Yu P, Cai Y Q, Du Y H, Wu D X, Gao S, Tan C L, Li Z, Ren M Q, Osipowicz T, Chen S M, Jiang Z, Li J, Huang Y, Yang J, Chen Y, Ang C Y, Zhao Y L, Wang P, Song L, Wu X J, Liu Z, Borgna A, Zhang H. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution[J]. Nat. Catal., 2018, 1(6): 460-468.
doi: 10.1038/s41929-018-0072-y
URL
|
[18] |
Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, de Arquer F P G, Dinh C T, Fan F J, Yuan M J, Yassitepe E, Chen N, Regier T, Liu P F, Li Y H, De Luna P, Janmohamed A, Xin H L L, Yang H G, Vojvodic A, Sargent E H. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352: 333-337.
doi: 10.1126/science.aaf1525
pmid: 27013427
|
[19] |
Kang X W, Miao K H, Guo Z W, Zou J S, Shi Z Q, Lin Z, Huang J, Chen S W. Pdru alloy nanoparticles of solid solution in atomic scale: Size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol[J]. J. Catal., 2018, 364: 183-191.
doi: 10.1016/j.jcat.2018.05.022
URL
|
[20] |
Zhu X R, Hu Z, Huang M, Zhao Y X, Qu J Q, Hu S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction[J]. Chinese Chem Lett, 2021, 32(6): 2033-2037.
doi: 10.1016/j.cclet.2020.11.071
URL
|
[21] |
Wang X L, Cong Y Y, Qiu C X, Wang S J, Qin J Q, Song Y J. Core-shell structured Ru@PtRu nanoflower electrocatalysts toward alkaline hydrogen evolution reaction[J]. J. Electrochem., 2020, 26(6): 815-824.
|
[22] |
Hu X, Zou J S, Gao H C, Kang X W. Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on Co adsorption and electrocatalytic activity of formic acid oxidation[J]. J. Colloid Interf. Sci., 2020, 570: 72-79.
doi: 10.1016/j.jcis.2020.02.111
URL
|
[23] |
Liu K, Wang W, Guo P H, Ye J Y, Wang Y Y, Li P T, Lyu Z X, Geng Y S, Liu M C, Xie S F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation[J]. Adv. Funct. Mater., 2019, 29(2): 1806300.
doi: 10.1002/adfm.201806300
URL
|
[24] |
Yang G X, Farsi L, Mei Y H, Xu X, Li A Y, Deskins N A, Teng X W. Conversion of ethanol via C-C splitting on noble metal surfaces in room-temperature liquid-phase[J]. J. Am. Chem. Soc., 2019, 141(24): 9444-9447.
doi: 10.1021/jacs.8b13115
URL
|
[25] |
Li H Q, Fan Q Y, Ye J Y, Cao Z M, Ma Z F, Jiang Y Q, Zhang J W, Cheng J, Xie Z X, Zheng L S. Excavated Rh nanobranches boost ethanol electro-oxidation[J]. Mater. Today Energy, 2019, 11: 120-127.
|
[26] |
Tan T H, Scott J, Ng Y H, Taylor R A, Aguey-Zinsou K F, Amal R. C-C cleavage by Au/TiO2 during ethanol oxidation: Understanding bandgap photoexcitation and plasmonically mediated charge transfer via quantitative in situ drifts[J]. ACS Catalysis, 2016, 6(12): 8021-8029.
doi: 10.1021/acscatal.6b01833
URL
|
[27] |
Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
doi: 10.1002/adma.201807780
URL
|
[28] |
Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
doi: 10.1039/D1TA03593B
URL
|