[1] |
Pei Y, Cheng Y, Chen J Y, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Recent developments of transition metal phosphides as catalysts in the energy conversionfield[J]. J. Mater. Chem. A, 2018, 6(46): 23220-23243.
doi: 10.1039/C8TA09454C
URL
|
[2] |
Shi Y, Ma Z R, Xiao Y Y, Yin Y C, Huang W M, Huang Z C, Zheng Y Z, Mu F Y, Huang R, Shi G Y, Sun Y Y, Xia X H, Chen W. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 3021.
doi: 10.1038/s41467-021-23306-6
pmid: 34021141
|
[3] |
Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020, 49(10): 3072-3106.
doi: 10.1039/d0cs00013b
pmid: 32309830
|
[4] |
Jiao Y, Zheng Y, Jaroniec M T, Qiao S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086.
doi: 10.1039/c4cs00470a
pmid: 25672249
|
[5] |
Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, Hu B T, Wang D S, Peng Q, Chen C, Li Y D. Synergistically interactive pyridinic-n-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8982-8990.
doi: 10.1002/anie.201908760
pmid: 31515887
|
[6] |
Xia J W, Volokh M, Peng G M, Fu Y S, Wang X, Shalom M. Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2019, 12(12): 2780-2787.
doi: 10.1002/cssc.201900472
pmid: 30938925
|
[7] |
Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Jaroniec M, Qiao S Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(49): 16174-16181.
pmid: 27960327
|
[8] |
Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting[J]. Nano Today, 2017, 15: 26-55.
doi: 10.1016/j.nantod.2017.06.006
URL
|
[9] |
Han Z, Zhang R L, Duan J J, Wang A J, Zhang Q L, Huang H, Feng J J. Platinum-rhodium alloyed dendritic nanoass-emblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2020, 45(11): 6110-6119.
doi: 10.1016/j.ijhydene.2019.12.155
URL
|
[10] |
Hu J, Zhang C X, Jiang L, Lin H, An Y M, Zhou D, Leung M K H, Yang S H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
doi: 10.1016/j.joule.2017.07.011
URL
|
[11] |
Cheng C, Shah S S A, Najam T, Qi X Q, Wei Z D. Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P[J]. Electrochim. Acta, 2018, 260: 358-364.
doi: 10.1016/j.electacta.2017.12.024
URL
|
[12] |
Liu J L, Zheng Y, Jiao Y, Wang Z Y, Lu Z G, Vasileff A, Qiao S Z. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting[J]. Small, 2018, 14(16): 1704073.
doi: 10.1002/smll.201704073
URL
|
[13] |
Xia Y J, Wu W Q, Wang H, Rao S L, Zhang F Y, Zou G F. Amorphous RuS2 electrocatalyst with optimized active sites for hydrogen evolution[J]. Nanotechnology, 2020, 31(14): 145401.
doi: 10.1088/1361-6528/ab62d3
URL
|
[14] |
Shin S, Jin Z, Kwon D H, Bose R, Min Y S. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition[J]. Langmuir, 2015, 31(3): 1196-1202.
doi: 10.1021/la504162u
URL
|
[15] |
Cao D, Wang J Y, Xu H X, Cheng D J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values[J]. Small, 2020, 16(37): 2000924.
doi: 10.1002/smll.202000924
URL
|
[16] |
Wang J, Hu J, Niu S Q, Li S W, Du Y C, Xu P. Crystalline-amorphous Ni2P4O12/NiMoOx nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction[J]. Small, 2022, 18(10): 2105972.
doi: 10.1002/smll.202105972
URL
|
[17] |
Arenal R, Lopez-Bezanilla A. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation[J]. ACS Nano, 2014, 8(8): 8419-8425.
pmid: 25061660
|
[18] |
Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23-J26.
|
[19] |
Wu H M, Feng C Q, Zhang L, Zhang J J, Wilkinson D P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis[J]. Electrochem. Energy Rev., 2021, 4(3): 473-507.
doi: 10.1007/s41918-020-00086-z
URL
|
[20] |
Zhang L J, Jang H, Liu H H, Kim M G, Yang D J, Liu S G, Liu X E, Cho J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angew. Chem. Int. Ed., 2021, 60(34): 18821-18829.
doi: 10.1002/anie.202106631
URL
|
[21] |
Rochefort D, Dabo P, Guay D, Sherwood P M A. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochim. Acta, 2003, 48(28): 4245-4252.
doi: 10.1016/S0013-4686(03)00611-X
URL
|
[22] |
Wang Y T, Li H J, Zhou W, Zhang X, Zhang B, Yu Y F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia[J]. Angew. Chem. Int. Ed., 2022, 61(19): e202202604.
|
[23] |
Zhang Y J, Xu Z F, Li G Y, Huang X J, Hao W C, Bi Y P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angew. Chem. Int. Ed., 2019, 58(40): 14229-14233.
doi: 10.1002/anie.201907954
URL
|
[24] |
Johannes M D, Stux A M, Swider-Lyons K E. Electronic structure and properties of Li-insertion materials: Li2RuO3 and RuO2[J]. Phys. Rev. B, 2008, 77(7): 075124.
doi: 10.1103/PhysRevB.77.075124
URL
|
[25] |
Qiu H J, Ito Y, Cong W T, Tan Y W, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angew. Chem. Int. Ed., 2015, 54(47): 14031-14035.
doi: 10.1002/anie.201507381
pmid: 26474177
|
[26] |
Huang H W, Jung H, Li S F, Kim S, Han J W, Lee J. Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping[J]. Nano Energy, 2022, 92: 106763.
doi: 10.1016/j.nanoen.2021.106763
URL
|
[27] |
Shang H S, Zhao Z H, Pei J J, Jiang Z L, Zhou D N, Li A, Dong J C, An P F, Zheng L R, Chen W X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(43): 22607-22612.
doi: 10.1039/D0TA08940K
URL
|