[1]Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): E170-E192.[2]Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries[J]. Energy & Environmental Science, 2010, 3(2): 174-189.[3]Kim S W, Seo D H, Ma X H, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.[4]Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.[5]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499.[6]Chen Z X, Zhou M, Cao Y L, et al. In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage[J]. Advanced Energy Materials, 2012, 2(1): 95-102.[7]Souza D C S, Pralong V, Jacobson A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry[J]. Science, 2002, 296(5575): 2012-2015.[8]Gillot F, Monconduit L, Doublet M L. Electrochemical behaviors of binary and ternary manganese phosphides[J]. Chemistry of Materials, 2005, 17(23): 5817-5823.[9]Boyanov S, Bernardi J, Gillot F, et al. FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process[J]. Chemistry of Materials, 2006, 18(15): 3531-3538.[10]Qian J F, Qiao D, Ai X P, et al. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries[J]. Chemical Communications, 2012, 48: 8931-8933.[11]Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides[J]. Journal of The Electrochemical Society, 2004, 151(11): A1878-A1885.[12]Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries[J]. Advanced Materials, 2003, 15(9): 736-739.[13]Badway F, Cosandey F, Pereira N, et al. Carbon metal fluoride nanocomposites high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries[J]. Journal of The Electrochemical Society, 2003, 150(10): A1318-A1327.[14]Li T, Li L, Cao Y L, et al. Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7), 3190-3195.[15]Li C, Gu L, Tsukimoto S, et al. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries[J]. Advanced Materials, 2010, 22(33): 3650-3654.[16]Kim S W, Seo D H, Gwon H, et al. Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries[J]. Advanced Materials, 2010, 22(46): 5260-5264.[17]Liu J L, Cui W J, Wang C X, et al. Electrochemical reaction of lithium with CoCl2 in nonaqueous electrolyte[J]. Electrochemistry Communications, 2011, 13(3): 269-271.[18]Li T, Chen Z X, Ai X P, et al. Transition-metal chlorides as conversion cathode materials for Li-ion batteries[J]. Electrochimca Acta, 2012, 68: 202-205.[19]Débart A, Dupont L, Patrice R, et al. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide[J]. Solid State Sciences, 2006, 8(6): 640-651.[20]Li T, Ai X P, Yang H Y. Reversible electrochemical conversion reaction of Li2O/CuO nanocomposites and their application as high-capacity cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(13): 6167-6174.[21]Nishijima M, Gocheva I D, Okada S, et al. Cathode properties of metal trifluorides in Li and Na secondary batteries[J]. Journal of Power Sources, 2009, 190(2): 558-562.[22]Li C, Yin C, Mu X, et al. Top-down synthesis of open framework fluoride for lithium and sodium batteries[J]. Chemistry of Materials, 2013, 25(6): 962-969.[23]Li C, Yin C, Gu L, et al. An FeF3·0.5H2O polytype: A microporous framework compound with intersecting tunnels for Li and Na batteries[J]. Journal of the American Chemical Society, 2013, 135(31): 11425-11428.[24]Li T(李婷), Chen Z(陈重学), Cao Y(曹余良), et al. NaF-M (M=Fe, Cu) nanocomposites as conversion cathode materials for sodium ion batteries[J]. Journal of Electrochemistry(电化学), 2012, 18(4): 291-294.[25]Hariharan S, Saravanan K, Ramar V, et al. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4[J]. Physical Chemistry Chemical Physics, 2013, 15(8): 2945-2953.[26]Wen J W, Zhang D W, Zang Y, et al. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries[J]. Electrochimica Acta, 2014, 132: 193-199.[27]Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition[J]. Nano Letters, 2014, 14(7): 4119-4124.[28]Wang L, Zhang K, Hu Z, et al. Porous CuO nanowires as the anode of rechargeable Na-ion batteries[J]. Nano Research, 2014, 7(2): 199-208.[29]Valvo M, Lindgren F, Lafont U, et al. Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide[J]. Journal of Power Sources, 2014, 245: 967-978.[30]Yu D Y W, Prikhodchenko P V, Mason C W, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries[J]. Nature Communications, 2013, 4: 2922.[31]Qu B, Ma C, Ji G, et al. Layered SnS2-reduced graphene oxide composite a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859.[32]Wu L, Lu H, Xiao L, et al. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(39): 16424-16428.[33]Qian J, Xiong Y, Cao Y, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cyclestable anode of Na-ion batteries[J]. Nano Letters, 2014, 14(4): 1865-1869.[34]Fullenwarth J, Darwiche A, Soares A, et al. NiP3: A promising negative electrode for Li- and Na-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(7): 2050-2059. |