[1] Ohzuku T, Brodd R J. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. Journal of Power Sources, 2007, 174(2): 449-456. [2] Bih H, Bih L, Manoun B, et al. Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature[J]. Journal of Molecular Structure, 2009, 936(1/3): 147-155.[3] Padhi A, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. Journal of the Electrochemical Society, 1997, 144(5): 1609-1613.[4] Nanjundaswamy K S, Padhi A, Goodenough J B, Padhi A. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92(1/2): 1-10.[5] Padhi A, Nanjundaswamy K S, Masquelier C, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J]. Journal of the Electrochemical Society, 1997, 144(8): 2581-2586.[6] Padhi A, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.[7] Masquelier C, Padhi A, Nanjundaswamy K S, et al. New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P, As)[J]. Journal of Solid State Chemistry, 1998, 135(2): 228-234.[8] Bai J Y, Gong Z L, Lv D P, et al. Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(24): 12128-12132.[9] Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2006, 9(12): A542-A544.[10] Shirakawa J, Nakayama M, Wakihara M, et al. Changes in electronic structure upon Li insertion reaction of monoclinic Li3Fe2(PO4)3[J]. Journal of Physical Chemistry B, 2006, 110(36): 17743-17750.[11] Shirakawa J, Nakayama M, Wakihara M, et al. Changes in electronic structure upon lithium insertion into Fe2(SO4)3 and Fe2(MoO4)3 investigated by X-ray absorption spectroscopy[J]. Journal of Physical Chemistry B, 2007, 111(6): 1424-1430.[12] Rousse G, Rodriguez-Carvajal J, Wurm C, et al. Magnetic structural studies of the two polymorphs of Li3Fe2(PO4)3: Analysis of the magnetic ground state from super-super exchange interactions[J]. Chemistry of Materials, 2001, 13(12): 4527-4536.[13] Andersson A S, Kalska B, Eyob P, et al. Lithium insertion into rhombohedral Li3Fe2(PO4)3[J]. Solid State Ionics, 2001, 140(1/2): 63-70.[14] Castets A, Carlier D, Trad K, et al. Analysis of the Li7 NMR signals in the monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 phases[J]. Journal of Physical Chemistry C, 2010, 114(44): 19141-19150. [15] Davis L J, Heinmaa I, Goward G R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using Li6 VT and 2D Exchange MAS NMR spectroscopy[J]. Chemistry of Materials, 2010, 22(3): 769-775.[16] Masquelier C, Padhi A K, Nanjundaswamy K S, et al. New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P,As)[J]. Journal of Solid State Chemistry, 1998, 135(2): 228-234.[17] Morcrette M, Wurm C, Masquelier C. On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials[J]. Solid State Ionics, 2002, 4(2): 239-246.[18] Balasubramanian M, Melendres C A, Mini S. X-ray absorption spectroscopy studies of the local atomic and electronic structure of iron incorporated into electrodeposited hydrous nickel oxide films[J]. Journal of Physical Chemistry B, 2000, 104(18): 4300-4306. [19] Eiichi A. Chemical effect on X-ray K-absorption edges of manganese, chromium, and vanadium[J]. Chemistry Letters, 1974, 12: 1467-1472. |