[1] Doyle M, Fuller T F, and Newman J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/ Insertion Cell[J]. J. Electrochem. Soc. , 1993, 140(6): 1526-1533.[2] Basu S and Worrell W L. Fast Ion Transport in Solids[C], Amsterdam: North-Holland Publishing Co. , 1979: 149-152.[3] Sequeira C A C and A. Hopper. The Study of Lithium Electrode Reversibility Against (PEO)xLiF3CSO3 Polymeric Electrolytes[J]. Solid State Ionics, 1983, 9&10(2): 1131-1138.[4] Fuller T F, Doyle M, and Newman J. Simulation and Optimazation of the Dual Lithium Ion Insertion Cell[J]. J. Electroehem. Soc. , 1994, 141(1): 1-10.[5] R. Pollard and J. Newman. Transient Behaviour of Porous Electrodes with High Exchange Current Densities[J]. Electrochim. Acta, 1980, 25(3): 315-321.[6] Feng Y(冯毅). 锂离子电池数值模型研究[D], 上海, 中国科学院研究生院, 2008.[7] Albertus P, Christensen J, and Newman J. Experimentals on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries[J]. J. Electrochem. Soc. , 2009, 156(7): 606-618.[8] Ramadass P, White R E, and PoPov B N, et al. Development of First Principles Capacity Fade Model for Li-Ion Cells[J]. J. Electrochem. Soc. , 2004, 151(2): 196-203.[9] Sikha G, Popov B N, and White R E. Effect of Porosity on the Capacity Fade of a Lithium-Ion battery[J]. J. Electrochem. Soc. , 2004, 151(7): 1104-1114.[10] Darling R and Newman J. Modeling Side Reactions in Composite LiyMn2O4 Electrodes[J]. J. Electroehem. Soc. , 1998, 145(3): 990- 998.[11] Reimers J N and Dahn J R. Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2[J]. J. Electrochem. Soc. , 1992, 139(8): 2091-2097.[12] Zhang Q and White R E. Moving Boundary Model for the Discharge of a LiCoO2 Electrode[J]. J. Electrochem. Soc. , 2007, 154(6): 587- 596.[13] Renganathan S, Sikha G, and White R E, et al. Theoratical Analysis of Stresses in a Lithium Ion Cell[J]. J. Electrochem. Soc. , 2010, 157(2): 155-163.[14] Bernardi D, Pawlikowski E, and Newman J. A General Energy Balance for Battery Systems [J]. J. Electrochem. Soc. , 1985, 132(1): 5-12.[15] Kumaresan K, Sikha G, and White R E. Thermal Model for a Li-Ion Cell[J]. J. Electrochem. Soc. , 2008, 155 (2): 164-171.[16] Gu W B and Wang C Y. Thermal-Electrochemical Modeling of Battery Systems[J]. J. Electrochem. Soc. , 2000, 147(8): 2910-2022.[17] Liu S Y. An Analytical Solution to Li/Li+ Insertion into a Porous Electrode[J]. Solid State Ionics, 2006, 177 (1&2): 53-58.[18] Johan M R and Arof A K. Modeling of Electrochemical Intercalation of Lithium into a LiMn2O4 Electrode Using Green Function[J]. J. Power. Source, 2007, 170(2): 490-494.[19] Doyle M and Newmen J. Analysis of Capacity-Rate Data for Lithium Batteries Using Simplified Models of the Discharge Process[J]. J. Appl. Electrochem. 1997, 27(7): 846-856 .[20] Ali S A H, Hussin A, and Arof A K. Short- and Long-Time Solutions for Material Balance Equation in Lithium -ion Batteries by Laplace Transform[J]. J. Power source, 2002, 112(2): 435-442.[21] Bhikkaji B and Soderstrom T. Reduced order models for diffusion systems[J]. Int. J. Control, 2001, 74(15): 1543-1557.[22] Smith K A, Rahn C D, and Wang C Y. Model Order Reduction of 1D Diffusion Systems Via Residue Grouping [J]. J. Dyn. Syst. Control, 2008, 130(1): 1-8.[23] Cai L and White R E. Reduction of Model Order Based on Proper Othogonal Decomposition for Lithium-Ion Battery Simulations[J]. J. Electrochem. Soc. , 2009, 156(3): 154-161. |