[1] Chen G F(陈桂芳), Liang Z Q(梁志强), Li G X(李根喜). Progress of electrochemical biosensors fabricated with nanomaterials[J]. Acta Biophysica Sinica (生物物理学报) [J]. 2010, 26(8): 711-725.[2] Willner I, Willner B, Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications[J]. Bioelectrochemistry, 2007, 70(1): 2-11.[3] Liu S Q, Leech D, Ju H X. Application of colloidal gold in protein immobilization, electron transfer, and biosensing[J]. Analytical Letters, 2003, 36(1): 1-19.[4] Xiao Y, Patolsky F, Katz E, et al. "Plugging into enzymes": Nanowiring of redox-enzymes by a gold nanoparticle[J]. Science, 2003, 299(5614): 1877-1881.[5] Zhao J, Zhu X, Li T, et al. Self-assembled multilayer of gold nanoparticles for ampli?ed electrochemical detection of cytochrome c[J]. Analyst, 2008, 133(9): 1242-1245.[6] Lin J H, Zhang L J, Zhang S S. Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode[J]. Analytical Biochemistry, 2007, 370(2): 180-185.[7] Zhang L Y, Liu Y, Chen T. A mediatorless and label-free amperometric immunosensor for detection of h-IgG[J]. International Journal of Biological Macromolecules, 2008, 43(2): 165-169. [8] Chico B, Camacho C, Perez M, et al. Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction[J]. Journal of Electroanalytical Chemistry, 2009, 629(1/2): 126-132.[9] Tanja N, Noell G. Strategies for "wiring'' redox-active proteins to electrodes and applications in biosensors, biofuel cells and nanotechnology[J]. Chemical Society Reviews, 2011, 40(7): 3564-3576.[10] Cai C X. The direct electrochemistry of cytochrome c at a gold microband electrode modified with 4, 6-dime thyl-2- mercaptopyrimidine[J]. Journal of Electroanalytical Chemistry, 1995, 393(1/2): 119-122.[11] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy electrode modified with single wall carbon nanotubes[J]. Analytical Chemistry, 2002, 74(9): 1933-1997.[12] Cheng F L, Du S, Jin B K. Electrochemical studies of cytochrome c on electrodes modified by single wall carbon nanotubes[J]. Chinese Journal of Chemistry, 2003, 21(4): 436-441.[13] Ahirwal G K, Mitra C K. Direct electrochemistry if horseradish peroxidase-gold nanoparticle conjugate[J]. Sensors, 2009, 9(2): 881-894.[14] Zhang S, Wang N, Yu H, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 2005, 67(1): 15-22.[15] Shipway A N, Lahv M, Willner, I. Nanostructured gold colloid electrode[J]. Advanced Materials, 2000, 12(13): 993-998.[16] Jiang X E, Zaitseva E, Schmidt M, et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12113-12117.[17] Jiang X E, Engelhard M, Ataka K, et al. Molecular impact of the membrane potential on the regulatory mechanism of proton transfer in sensory rhodopsin II[J]. Journal of the American Chemical Society, 2010, 132(31): 10808-10815.[18] Ataka K, Heberle J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer[J]. Journal of the American Chemical Society, 2003, 125(17): 4986-4987. [19] Ataka K, Heberle J. Biochemical applications of surface-enhanced infrared absorption spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2007, 388(1): 47-54.[20] Frens G. Controlled mucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Sciences, 1973, 241(105): 20-22.[21] Jiang X E, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2008, 112(3): 813-819. [22] Ataka K, Giess F, Knoll W, et al. Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society, 2004, 126(49): 16199-16206.[23] Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes[J]. Journal of the American Chemical Society, 2005, 127(22): 8168-8173.[24] Chittur K C. FTIR/ATR for protein adsorption to biomaterial surfaces[J]. Biomaterials, 1998, 19(4/5): 357-369. [25] Wu Y Q, Murayama K, Czarnik-Matusewicz B, et al. Two-dimensional attenuated total reflection/infrared correlation spectroscopy studies on concentration and heat-induced structural changes of human serum albumin in aqueous solutions[J]. Applied Spectroscopy, 2002, 56(9): 1186-1193.[26] Grabarek Z. Gergely J. Zero-length crosslinking procedure with the use of active esters[J]. Analytical Biochemistry, 1990, 185(1): 131-135. [27] Staros J V, Wright R W. Swingle D M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions[J]. Analytical Biochemistry, 1986, 156(1): 220-222.[28] Timkovich R. Detection of the stable addition of carbodiimide to proteins[J]. Analytical Biochemistry, 1977, 79(1/2): 135-143. [29] Ataka K, Heberle J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes[J]. Journal of the American Chemical Society, 2004, 126(30): 9445-9457. |