电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104461. doi: 10.13208/j.electrochem.210446
所属专题: “电子电镀和腐蚀”专题文章
纪执敬1, 凌惠琴1, 吴培林2, 余瑞益2,3, 于大全2,3,*(), 李明1,*()
收稿日期:
2021-11-08
修回日期:
2022-01-21
出版日期:
2022-06-28
发布日期:
2022-06-28
通讯作者:
于大全,李明
E-mail:mingli90@sjtu.edu.cn;yudaquan@xmu.edu.cn
Zhi-Jing Ji1, Hui-Qin Ling1, Pei-Lin Wu2, Rui-Yi Yu2,3, Da-Quan Yu2,3,*(), Ming Li1,*()
Received:
2021-11-08
Revised:
2022-01-21
Published:
2022-06-28
Online:
2022-06-28
Contact:
Da-Quan Yu, Ming Li
E-mail:mingli90@sjtu.edu.cn;yudaquan@xmu.edu.cn
摘要:
随着摩尔定律的发展迟缓,微电子器件的高密度化、微型化对先进封装技术提出了更高的要求。中介层技术作为2.5D/3D封装中的关键技术,受到了广泛研究。按照中介层材料不同,主要分为有机中介层、硅中介层以及玻璃中介层。与硅通孔(through silicon via, TSV)互连相比,玻璃通孔(through glass via,TGV)中介层(interposer)因其具有优良的高频电学特性、 工艺简单、 成本低以及可调的热膨胀系数(coefficient of thermal expansion,CTE)等优点,在2.5D/3D先进封装领域受到广泛关注。然而玻璃的导热系数(约1 W·m-1·K-1)与硅(约150 W·m-1·K-1)相比要低很多,因此玻璃中介层存在着严重的散热问题。为得到高质量的TGV中介层,不仅需要高效低成本的通孔制备工艺,还需要无缺陷的填充工艺,目前玻璃中介层面临的挑战也主要集中在这两方面。本文首先介绍了TGV的制备工艺,如超声波钻孔(ultra-sonic drilling, USD)、超声波高速钻孔(ultra-sonic high speed drilling,USHD)、湿法刻蚀、深反应离子刻蚀(deep reactive ion etching, DRIE)、光敏玻璃、激光刻蚀、激光诱导深度刻蚀(laser induced deep etching, LIDE)等。接着围绕TGV的无缺陷填充进行总结,概述了TGV的几种填充机理以及一些填充工艺,如bottom-up填充、蝶形填充以及conformal填充。然后对TGV电镀添加剂的研究进展进行了介绍,包括典型添加剂的作用机理以及一些新型添加剂的研究现状,最后并对TGV实际应用情况进行了简要综述。
纪执敬, 凌惠琴, 吴培林, 余瑞益, 于大全, 李明. 玻璃通孔三维互连镀铜填充技术发展现状[J]. 电化学(中英文), 2022, 28(6): 2104461.
Zhi-Jing Ji, Hui-Qin Ling, Pei-Lin Wu, Rui-Yi Yu, Da-Quan Yu, Ming Li. Development Status of Copper Electroplating Filling Technology in Through Glass Via for 3D Interconnections[J]. Journal of Electrochemistry, 2022, 28(6): 2104461.
表2
常见薄膜制备工艺对比
Deposition method | Advantage | Disadvantage |
---|---|---|
Sputtering | Good uniformity, high deposition rate and low cost | Difficult to fill deep via |
PVD | Mature equipment, simple operation, controllable thickness, and tight film bonding | Poor step coverage |
CVD | Mature equipment, good uniformity, good step coverage | Low deposition rate, and high process temperature |
ALD | Good step coverage, controllable thickness | Immature technology |
Electroless plating | Simple operation, good step coverage | Unstable plating solution, and poor bonding force |
[1] | Sukumaran V, Kumar G, Ramachandran K, Suzuki Y, Demir K, Sato Y, Seki T, Sundaram V, Tummala R R. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2014, 4(5): 786-795. |
[2] | Hsieh M C, Kang K T, Choi H C, Kim Y C. International Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, October 26-28, 2016[C]. Piscataway: IEEE, 2016. |
[3] | Hsieh M, Lin S, Hsu I, Chen C Y, Cho N J. 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, Warsaw, September 10-13, 2017[C]. Piscataway: IEEE, 2018. |
[4] | Usman A, Shah E, Satishprasad N B, Chen J L, Bohlemann S A, Shami S H, Eftekhar A A, Adibi A. Interposer technologies for high-performance applications[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2017, 7(6): 819-828. |
[5] | Kuramochi S, Kudo H, Akazawa M, Mawatari H, Tanaka M, Fukuoka Y. 2016 6th Electronic System-Integration Technology Conference (ESTC), Grenoble, September 13-15, 2016[C]. Piscataway: IEEE, 2016. |
[6] | Kuramochi S, Koiwa S, Nagano H, Iida J, Akazawa M, Mawatari H, Suzuki K, Fukuoka Y. 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, January 25-28, 2016[C]. Piscataway: IEEE, 2016. |
[7] |
Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid[J]. J. Non-Cryst. Solids, 1992, 143(1): 84-92.
doi: 10.1016/S0022-3093(05)80556-3 URL |
[8] | Töpper M, Ndip I, Erxleben R, Brusberg L, Nissen N, Schröder H, Yamamoto H, Todt G, Reichl H. 2010 Proceedings 60th Electronic Components and Technology Conference, Las Vegas, NV, June 1-4, 2010[C]. Piscataway: IEEE, 2010. |
[9] | Ogutu P G. Hybrid metallization of glass and superconformal filling of through glass vias for interposer application[D]. Binghamton: State University of New York at Binghamton, 2015. |
[10] | Sukumaran V, Bandyopadhyay T, Sundaram V, Tummala R. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs[J]. IEEE Trans. Compon. Pack. Manuf. Technol., 2012, 2(9): 1426-1433. |
[11] | Garrou P, Koyanagi M, Ramm P. Handbook of 3D integration: volume 3-3D process technology[M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. |
[12] | Wang Q W(王强文), Guo Y H(郭育华), Liu J J(刘建军), Wang Y L(王运龙). High heat dissipation performance of the TGV interposer[J]. Micronanoelectron. Technol.(微纳电子技术), 2021, 58(2): 177-183. |
[13] | Zheng L, Zhang Y, Zhang X, Bakir M S. 2015 IEEE 65th Electronic Components and Technology Conference, San Diego, CA, May 26-29, 2015[C]. Piscataway: IEEE, 2015. |
[14] | Lai W C, Chuang H H, Tsai C H, Yeh E H, Lin C H, Peng T H, Yen L J, Liao W S, Hung J N, Sheu C C, Yu C H, Wang C T, Yee K C, Yu D. 2013 IEEE International Electron Devices Meeting, Washington, DC, December 9-11, 2013[C]. Piscataway: IEEE, 2014. |
[15] | LPKF. Through glass via (TGV) wafer[EB/OL]. (2018-02-05). https://www.vitrion.com/en/applications/through-glass-vias-tgv/ |
[16] | Ostholt R, Ambrosius N, Kruger R A. Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, September 16-18, 2014[C]. Piscataway: IEEE, 2014. |
[17] | Shacham-Diamand Y, Osaka T, Datta M, Ohba T. Advanced nanoscale ULSI interconnects: Fundamentals and applications[M]. New York: Springer, 2009. |
[18] |
Su W, Yao L B, Yang F, Li P Y, Chen J, Liang L F. Electroless plating of copper on surface-modified glass substrate[J]. Appl. Surf. Sci., 2011, 257(18): 8067-8071.
doi: 10.1016/j.apsusc.2011.04.100 URL |
[19] | Huang T, Sundaram V, Raj P M, Sharma H, Tummala R. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, May 27-30, 2014[C]. Piscataway: IEEE, 2014. |
[20] | Xie D(谢迪), Li H(李浩), Wang C X(王从香), Cui K(崔凯), Hu Y F(胡永芳). Study on technology of through glass via for 3D integration package[J]. Electronics & Packaging(电子与封装), 2021, 21(7): 20-25. |
[21] | Wang B K, Chen Y A, Shorey A, Piech G. 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, October 24-26, 2012[C]. Piscataway: IEEE, 2013. |
[22] |
West A C, Mayer S, Reid J. A superfilling model that predicts bump formation[J]. Electrochem. Solid State Lett., 2001, 4(7): C50-C53.
doi: 10.1149/1.1375856 URL |
[23] |
Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154.
doi: 10.1016/j.electacta.2007.03.025 URL |
[24] |
Dow W P, Yen M Y, Liao S Z, Chiu Y D, Huang H C. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochim. Acta, 2008, 53(28): 8228-8237.
doi: 10.1016/j.electacta.2008.06.042 URL |
[25] |
Moffat T P, Josell D. Extreme bottom-up superfilling of through-silicon-vias by damascene processing: suppressor disruption, positive feedback and turing patterns[J]. J. Electrochem. Soc., 2012, 159(4): D208-D216.
doi: 10.1149/2.040204jes URL |
[26] |
Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
doi: 10.1149/1.2988134 URL |
[27] |
Dow W P, Liu D H, Lu C W, Chen C H, Yan J J, Huang S M. Through-hole filling by copper electroplating using a single organic additive[J]. Electrochem. Solid State Lett., 2011, 14(1): D13-D15.
doi: 10.1149/1.3511757 URL |
[28] |
Ogutu P, Fey E, Dimitrov N. Superconformal filling of through vias in glass interposers[J]. ECS Electrochem. Lett., 2014, 3(8): D30-D32.
doi: 10.1149/2.0081408eel URL |
[29] |
Ogutu P, Fey E, Dimitrov N. Superconformal filling of high aspect ratio through glass vias (TGV) for interposer applications using TNBT and NTBC additives[J]. J. Electrochem. Soc., 2015, 162(9): D457-D464.
doi: 10.1149/2.0641509jes URL |
[30] |
Fey E, Li J X, Dimitrov N. Fast and cost-effective superconformal filling of high aspect ratio through glass vias using MTT additive[J]. J. Electrochem. Soc., 2017, 164(6): D289-D296.
doi: 10.1149/2.0741706jes URL |
[31] |
Chang Y H, Tseng P L, Lin J C, Chen J C, Huang M C, Lin H Y, Pollard S, Mazumder P. Communication-defect-free filling of high aspect ratio through vias in ultrathin glass[J]. J. Electrochem. Soc., 2018, 166(1): D3155-D3157.
doi: 10.1149/2.0181901jes URL |
[32] | Wu S S, Ling H Q, Xie Y T, Li M, Yu D Q. 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, August 12-15, 2020[C]. Piscataway: IEEE, 2020. |
[33] |
Xiao H B, Wang F L, Wang Y, He H, Zhu W H. Effect of ultrasound on copper filling of high aspect ratio through-silicon via (TSV)[J]. J. Electrochem. Soc., 2017, 164(4): D126-D129.
doi: 10.1149/2.0301704jes URL |
[34] |
Wang F L, Zeng P, Wang Y, Ren X Y, Xiao H B, Zhu W H. High-speed and high-quality TSV filling with the direct ultrasonic agitation for copper electrodeposition[J]. Microelectron. Eng., 2017, 180: 30-34.
doi: 10.1016/j.mee.2017.05.052 URL |
[35] | Xie Y T(谢怡彤), Wu S S(吴珊珊), Li M(李明).一种填充玻璃转接板通孔的双电源双阳极电镀装置及方法: 中国, 202010042855.6[P]. 2020-05-15. |
[36] | Kim I R, Park J K, Chu Y C, Jung J P. High speed Cu filling into TSV by pulsed current for 3 dimensional chip stacking[J]. Korean J. Met. Mater., 2010, 48(7): 667-673. |
[37] |
Hong S C, Lee W G, Kim W J, Kim J H, Jung J P. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking[J]. Microelectron. Reliab., 2011, 51(12): 2228-2235.
doi: 10.1016/j.microrel.2011.06.031 URL |
[38] | Chen Y(陈杨), Cheng J(程骄), Wang C(王翀), He W(何为), Zhu K(朱凯), Xiao D J(肖定军). The influence factors of through-hole copper plating at high current density[J]. Plat. Finish.(电镀与精饰), 2015, 37(8): 23-27. |
[39] | Lai Z Q(赖志强). Research and application of high speed copper electroplating for the interconnection micro-holes of printed circuit board[D]. Chengdu: University of Electronic Science and Technology of China(电子科技大学), 2020. |
[40] |
Xu L H, Dixit P, Miao J, Pang J H L, Zhang X, Tu K N, Preisser R. Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins[J]. Appl. Phys. Lett., 2007, 90(3): 033111.
doi: 10.1063/1.2432284 URL |
[41] |
Jin S, Seo S, Wang G, Too B. Electrodeposition of nanotwin Cu by pulse current for through-Si-via (TSV) process[J]. J. Nanosci. Nanotechnol., 2016, 16(5): 5410-5414.
doi: 10.1166/jnn.2016.12244 URL |
[42] |
Sun F L, Liu Z Q, Li C F, Zhu Q S, Zhang H, Suganuma K. Bottom-up electrodeposition of large-scale nanotwinned copper within 3D through silicon via[J]. Materials, 2018, 11(2): 319.
doi: 10.3390/ma11020319 URL |
[43] |
Guymon C G, Harb J N, Rowley R L, Wheeler D R. MPSA effects on copper electrodeposition investigated by molecular dynamics simulations[J]. J. Chem. Phys., 2008, 128(4): 044717.
doi: 10.1063/1.2824928 URL |
[44] |
Peykova M, Michailova E, Stoychev D, Milchev A. Galvanostatic studies of the nucleation and growth kinetics of copper in the presence of surfactants[J]. Electrochim. Acta, 1995, 40(16): 2595-2601.
doi: 10.1016/0013-4686(95)00241-6 URL |
[45] |
Stoychev D, Vitanova I, Bujukliev R, Petkova N, Popova I, Pojarliev I. Effect of some dialkyl-, diaryl-, and diarylalkyl-disulphide derivatives on copper electrodeposition[J]. J. Appl. Electrochem., 1992, 22(10): 978-986.
doi: 10.1007/BF01024147 URL |
[46] |
Hai N T M, Huynh T T M, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL |
[47] |
Moffat T P, Baker B, Wheeler D, Josell D. Accelerator aging effects during copper electrodeposition[J]. Electrochem. Solid State Lett., 2003, 6(4): C59-C62.
doi: 10.1149/1.1553936 URL |
[48] |
Kim S K, Kim J J. Superfilling evolution in Cu electrodeposition: dependence on the aging time of the accelerator[J]. Electrochem. Solid State Lett., 2004, 7(9): C98-C100.
doi: 10.1149/1.1777552 URL |
[49] |
Tan M, Guymon C, Wheeler D R, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): D78-D81.
doi: 10.1149/1.2401057 URL |
[50] |
Pasquale M A, Gassa L M, Arvia A J. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochim. Acta, 2008, 53(20): 5891-5904.
doi: 10.1016/j.electacta.2008.03.073 URL |
[51] |
Kim J J, Kim S K, Kim Y S. Catalytic behavior of 3-mercapto-1-propane sulfonic acid on Cu electrodeposition and its effect on Cu film properties for CMOS device metallization[J]. J. Electroanal. Chem., 2003, 542: 61-66.
doi: 10.1016/S0022-0728(02)01450-X URL |
[52] | Li L Q(李立清), An W J(安文娟), Wang Y(王义). Action mechanism of MPS and chloride ions in electroplating copper microvia filling[J]. Surf. Technol.(表面技术), 2018, 47(5): 122-129. |
[53] |
Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
doi: 10.1149/1.3078407 URL |
[54] | Yokoi M, Konishi S, Hayashi T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku, 1984, 52(4): 218-223. |
[55] |
Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423.
doi: 10.1021/jp034875m URL |
[56] |
Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. J. Electrochem. Soc., 2006, 153(10): C728-C734.
doi: 10.1149/1.2335587 URL |
[57] |
Josell D, Moffat T P. Superconformal copper deposition in through silicon vias by suppression-breakdown[J]. J. Electrochem. Soc., 2018, 165(2): D23-D30.
doi: 10.1149/2.0061802jes URL |
[58] |
Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. J. Electrochem. Soc., 2008, 155(10): D632-D639.
doi: 10.1149/1.2958309 URL |
[59] |
Gallaway J W, Willey M J, West A C. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors[J]. J. Electrochem. Soc., 2009, 156(8): D287-D295.
doi: 10.1149/1.3142422 URL |
[60] |
Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3035-D3039.
doi: 10.1149/2.007312jes URL |
[61] | Xiao N(肖宁). Study on microvia filling performances and action mechanisms of EPE inhibitors in copper electroplating process[D]. Harbin: Harbin Institute of Technology(哈尔滨工业大学), 2013. |
[62] |
Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper via-filling process[J]. J. Electrochem. Soc., 2009, 156(4): D119-D124.
doi: 10.1149/1.3071603 URL |
[63] |
Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874.
doi: 10.1021/acsomega.9b03691 URL |
[64] |
Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-dithiodip-yridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668.
doi: 10.1149/2.0461913jes |
[65] |
Chen B A, Xu J, Wang L M, Song L F, Wu S Y. Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7793-7803.
doi: 10.1021/acsami.6b15400 URL |
[66] |
Haba T, Ikeda K, Uosaki K. Electrochemical and in situ SERS study of the role of an inhibiting additive in selective electrodeposition of copper in sulfuric acid[J]. Electrochem. Commun., 2019, 98: 19-22.
doi: 10.1016/j.elecom.2018.11.007 URL |
[67] | Liu X D(刘筱笛), Ming P M(明平美), Zhang J Z(张峻中), Li R Q(李润清), Zhao X M(赵西梅). Research and development of the purification technology of electroplating solution[J]. Plat. Finish.(电镀与精饰), 2017, 39(12): 20-24. |
[68] | Liu C(刘成), Huang T L(黄廷林), Zhao J W(赵建伟). Removal effect of organic matters of different MW during the process of coagulation and adsorption of powdered activated carbon[J]. Water Purif. Technol.(净水技术), 2006, 25(1): 31-33. |
[69] | Liu W(刘伟), Gao S B(高书宝), Wu D(吴丹), Cai R H(蔡荣华), Huang X P(黄西平), Zhang Q(张琦). The process of membrane extraction separation technique and applications[J]. J. Salt Sci. Chem. Ind.(盐科学与化工), 2013, 42(11): 26-31. |
[70] | Tummala R, Sundaram V. Impact of 3D ICs with TSV is profound but complex and costly-is there a better way[J]. Chip Scale Review, 2011, 8: 31-32. |
[71] | Chen L(陈力), Yang X F(杨晓锋), Yu D Q(于大全). Development of through glass via technology[J]. Electronics & Packaging(电子与封装), 2021, 21(4): 5-17. |
[72] | Lee T C, Chang Y S, Hsu C M, Hsieh S C, Lee P N, Hsieh Y C, Wang L C, Zhang L J. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, May 30- June 2, 2017[C]. Piscataway: IEEE, 2017. |
[73] | Watanabe A O, Ali M, Zhang R, Ravichandran S, Kakutani T, Raj P M, Tummala R R, Swaminathan M. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, June 3-30, 2020[C]. Piscataway: IEEE, 2020. |
[74] | Yu T, Zhang X D, Chen L, Ren X L, Duan Z M, Yu D Q. 2020 IEEE 70th Electronic Components and Technology Conference, Orlando, FL, June 3-30, 2020[C]. Piscataway: IEEE, 2020. |
[75] | Lee J Y, Lee S W, Lee S K, Park J H. 2013 IEEE 26th Proceedings IEEE Micro Electro Mechanical Systems (MEMS), Taipei, January 20-24, 2013[C]. Piscataway: IEEE, 2013. |
[76] | Ma S L, Ren K L, Xia Y M, Yan J, Luo R F, Cai H, Jin Y F, Ma M J, Jin Z H, Chen J. 2016 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, August 16-19, 2016[C]. Piscataway: IEEE, 2016. |
[77] | Iwia T, Sakai T, Mizutani D, Sakuyama S, Iida K, Inaba T, Fujisaki H, Miyazawa Y. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, May 29-June 1, 2018[C]. Piscataway: IEEE, 2018. |
[78] | Iwia T, Sakai T, Mizutani D, Sakuyama S, Iida K, Inaba T, Fujisaki H, Tamura A, Miyazawa Y. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, May 28-31, 2019[C]. Piscataway: IEEE, 2019. |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[4] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[5] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[6] | 杨凯, 陈际达, 陈世金, 许伟廉, 郭茂桂, 廖金超, 吴熷坤. 高深径比通孔脉冲电镀添加剂及电镀参数的优化[J]. 电化学(中英文), 2022, 28(6): 2104491-. |
[7] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[8] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[9] | 谢茂玲, 王钧, 胡晨吉, 郑磊, 孔华彬, 沈炎宾, 陈宏伟, 陈立桅. 基于非亲核电解液构建稳定的镁离子电池[J]. 电化学(中英文), 2022, 28(3): 2108561-. |
[10] | 黄波, 张新胜, 钮东方, 胡硕真. 对称季铵碱的烷基链长度对草酸电还原反应的影响[J]. 电化学(中英文), 2021, 27(5): 529-539. |
[11] | 张彪, 帅毅, 王玉, 杨纳川, 陈康华. 碳酸酯类电解液中Mg(NO3)2添加剂抑制锂枝晶生长的研究[J]. 电化学(中英文), 2021, 27(4): 423-428. |
[12] | 王赵云, 金磊, 杨家强, 李威青, 詹东平, 杨防祖, 孙世刚. 高密度互连印制电路板孔金属化研究和进展[J]. 电化学(中英文), 2021, 27(3): 316-331. |
[13] | 王翀, 彭川, 向静, 陈苑明, 何为, 苏新虹, 罗毓瑶. 印制电路中电镀铜技术研究及应用[J]. 电化学(中英文), 2021, 27(3): 257-268. |
[14] | 常增花, 韩富娟, 杨夕馨, 王建涛, 卢世刚. 纳米硅在含添加剂的高浓度电解液中循环特征及其表面协同成膜的研究[J]. 电化学(中英文), 2020, 26(5): 759-771. |
[15] | 金磊, 杨家强, 杨防祖, 詹东平, 田中群, 周绍民. 芯片铜互连研究及进展[J]. 电化学(中英文), 2020, 26(4): 521-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||