[1] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460
|
[2] |
Li S, Cen Y, Xiang Q, Aslam M K, Hu B B, Li W, Tang Y, Yu Q, Liu Y P, Chen C G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(4): 1658-1668.
doi: 10.1039/C8TA10422K
URL
|
[3] |
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v
pmid: 25026475
|
[4] |
Zhang L, Qian T, Zhu X Y, Hu Z L, Wang M F, Zhang L Y, Jiang T, Tian J H, Yan C L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chem. Soc. Rev., 2019, 48(22): 5432-5453.
doi: 10.1039/c9cs00381a
pmid: 31647083
|
[5] |
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
doi: 10.1021/acs.nanolett.5b04166
pmid: 26713782
|
[6] |
Li S, Xu P, Aslam M K, Chen C G, Rashid A, Wang G L, Zhang L, Mao B W. Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes[J]. Energy Storage Mater., 2020, 27: 51-60.
|
[7] |
Wang N N, Zhang X, Ju Z Y, Yu X W, Wang Y X, Du Y, Bai Z C, Dou S X, Yu G H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nat. Commun., 2021, 12(1): 4519-4528.
doi: 10.1038/s41467-021-24873-4
pmid: 34312377
|
[8] |
Song Y Z, Zhao W, Kong L, Zhang L, Zhu X Y, Shao Y L, Ding F, Zhang Q, Sun J Y, Liu Z F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy Environ. Sci., 2018, 11(9): 2620-2630.
doi: 10.1039/C8EE01402G
URL
|
[9] |
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
doi: 10.1021/jacs.8b12973
pmid: 30764605
|
[10] |
Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Single atom array mimic on ultrathin mof nanosheets boosts the safety and life of lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(8): 1906722-1906731.
doi: 10.1002/adma.v32.8
URL
|
[11] |
Li S, Lin J D, Ding Y, Xu P, Guo X Y, Xiong W M, Wu D Y, Dong Q F, Chen J J, Zhang L. Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries[J]. ACS Nano, 2021, 15(8): 13803-13813.
doi: 10.1021/acsnano.1c05585
pmid: 34379405
|
[12] |
Xu S N, Zhao T, Wang L L, Huang Y X, Ye Y S, Zhang N X, Feng T, Li L, Wu F, Chen R J. Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries[J]. J. Energy Chem., 2022, 67: 423-431.
doi: 10.1016/j.jechem.2021.09.036
URL
|
[13] |
Fan X X, Yuan R M, Lei J, Lin X D, Xu P, Cui X Y, Cao L, Zheng M S, Dong Q F. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893.
doi: 10.1021/acsnano.0c07240
pmid: 33078941
|
[14] |
Pei F, Dai S Q, Guo B F, Xie H, Zhao C W, Cui J Q, Fang X L, Chen C M, Zheng N F. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities[J]. Energy Environ. Sci., 2021, 14(2): 975-985.
doi: 10.1039/D0EE03005H
URL
|
[15] |
Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103-16118.
doi: 10.1038/natrevmats.2016.103
|
[16] |
Gu Y, Wang W W, Li Y J, Wu Q H, Tang S, Yan J W, Zheng M S, Wu D Y, Fan C H, Hu W Q, Chen Z B, Fang Y, Zhang Q H, Dong Q F, Mao B W. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nat. Commun., 2018, 9: 1339-1347.
doi: 10.1038/s41467-018-03466-8
pmid: 29632301
|
[17] |
Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): 4372-4379.
|
[18] |
Seh Z W, Zhang Q F, Li W Y, Zheng G Y, Yao H B, Cui Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chem. Sci., 2013, 4(9): 3673-3677.
doi: 10.1039/c3sc51476e
URL
|
[19] |
Liu J, Galpaya D G D, Yan L J, Sun M H, Lin Z, Yan C, Liang C D, Zhang S Q. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery[J]. Energy Environ. Sci., 2017, 10(3): 750-755.
doi: 10.1039/C6EE03033E
URL
|
[20] |
Zhang H, Hu X H, Zhang Y, Wang S Y, Xin F, Chen X D, Yu D S. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 17: 293-299.
|
[21] |
Huang X, Luo B, Knibbe R, Hu H, Lyu M Q, Xiao M, Sun D, Wang S C, Wang L Z. An integrated strategy towards enhanced performance of the lithium-sulfur battery and its fading mechanism[J]. Chem.-Eur. J., 2018, 24(69): 18544-18550.
doi: 10.1002/chem.201804369
pmid: 30265420
|
[22] |
Yuan J J, Huang Z, Song Y Z, Li M Y, Fang L F, Zhu B K, Li H Y. In-situ crosslinked binder for high-stability S cathodes with greatly enhanced conduction and polysulfides anchoring[J]. Chem. Eng. J., 2021, 426: 128705-128714.
doi: 10.1016/j.cej.2021.128705
URL
|
[23] |
Fan W, Zhang X L, Li C J, Zhao S Y, Wang J. UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-Metal battery[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4513-4520.
|
[24] |
Luo Z, Xu Y, Gong C R, Zheng Y Q, Zhou Z X, Yu L M. An ultraviolet curable silicon/graphite electrode binder for long-cycling lithium ion batteries[J]. J. Power Sources, 2021, 485: 229348-229355.
doi: 10.1016/j.jpowsour.2020.229348
URL
|
[25] |
Ma C, Feng Y M, Liu X J, Yang Y, Zhou L J, Chen L B, Yan C L, Wei W F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 32: 46-54.
|
[26] |
Yu Z S, Liu M L, Guo D Y, Wang J H, Chen X, Li J, Jin H L, Yang Z, Chen X A, Wang S. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(16): 6406-6411.
doi: 10.1002/anie.201914972
pmid: 31971656
|
[27] |
Luo D, Li C J, Zhang Y G, Ma Q Y, Ma C Y, Nie Y H, Li M, Weng X F, Huang R, Zhao Y, Shui L L, Wang X, Chen Z W. Design of quasi-mof nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(2): 2105541-2105550.
doi: 10.1002/adma.v34.2
URL
|
[28] |
Lei J, Fan X X, Liu T, Xu P, Hou Q, Li K, Yuan R M, Zheng M S, Dong Q F, Chen J J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries[J]. Nat. Commun., 2022, 13(1): 202-211.
doi: 10.1038/s41467-021-27866-5
pmid: 35017484
|
[29] |
Zhang B, Qin X, Li G R, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.
doi: 10.1039/c002639e
URL
|
[30] |
Deng Z F, Zhang Z A, Lai Y Q, Liu J, Li J, Liu Y X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading[J]. J Electrochem Soc, 2013, 160(4): A553-A558.
doi: 10.1149/2.026304jes
URL
|
[31] |
Yin Z H, Pan S Y, Cheng Q, Zhang G Z, Yu X Y, Pan Z X, Rao H S, Zhong X H. Mild-method synthesised rGo-TiO2 as an effective polysulphide-barrier for lithium-sulphur batteries[J]. J. Alloy. Compd., 2020, 836: 155341-155349.
doi: 10.1016/j.jallcom.2020.155341
URL
|
[32] |
Yao S S, Xue S K, Peng S H, Jing M X, Qian X Y, Shen X Q, Li T B, Wang Y H. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries[J]. J. Mater. Sci.-Mater. Electron., 2018, 29(20): 17921-17930.
doi: 10.1007/s10854-018-9906-2
|
[33] |
Nandasiri M I, Camacho-Forero L E, Schwarz A M, Shutthanandan V, Thevuthasan S, Balbuena P B, Mueller K T, Murugesan V. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chem. Mat., 2017, 29(11): 4728-4737.
doi: 10.1021/acs.chemmater.7b00374
URL
|
[34] |
Vorobeva K A, Eliseeva S N, Apraksin R V, Kamenskii M A, Tolstopjatova E G, Kondratiev V V. Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder[J]. J. Alloy. Compd., 2018, 766: 33-44.
doi: 10.1016/j.jallcom.2018.06.324
URL
|
[35] |
Chu Y, Chen N, Cui X M, Liu A M, Zhen L, Pan Q M. A multi-functional binder for high loading sulfur cathode[J]. J. Energy Chem., 2020, 46: 99-104.
doi: 10.1016/j.jechem.2019.10.020
URL
|
[36] |
Wang H, Yang Y, Zheng P T, Wang Y Y, Ng S W, Chen Y K, Deng Y H, Zheng Z J, Wang C Y. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 395: 124981-124991.
doi: 10.1016/j.cej.2020.124981
URL
|
[37] |
Luo X, Lu X B, Chen X D, Chen Y, Yu C Y, Su D W, Wang G X, Cui L F. A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery[J]. J. Energy Chem., 2020, 50: 63-72.
doi: 10.1016/j.jechem.2020.02.041
URL
|
[38] |
Kim S, Cho M, Lee Y. Saponin-containing multifunctional binder toward superior long-term cycling stability in Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(20): 10419-10425.
doi: 10.1039/D0TA03051A
URL
|
[39] |
Yang C A, Du Q K, Li Z H, Ling M, Song X Y, Battaglia V, Chen X B, Liu G. In-situ covalent bonding of polysulfides with electrode binders in operando for lithium-sulfur batteries[J]. J. Power Sources, 2018, 402: 1-6.
doi: 10.1016/j.jpowsour.2018.09.008
URL
|
[40] |
Rashid A, Zhu X Y, Wang G L, Ke C Z, Li S, Sun P F, Hu Z L, Zhang Q B, Zhang L. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 71-79.
doi: 10.1016/j.jechem.2020.01.031
URL
|
[41] |
Wang H L, Ling M, Bai Y, Chen S, Yuan Y X, Liu G, Wu C, Wu F. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries[J]. J. Mater. Chem. A, 2018, 6(16): 6959-6966.
doi: 10.1039/C7TA10239A
URL
|