电化学(中英文) ›› 2022, Vol. 28 ›› Issue (5): 2104091. doi: 10.13208/j.electrochem.210409
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2021-04-14
修回日期:
2021-05-18
出版日期:
2022-05-28
发布日期:
2021-06-10
通讯作者:
* Tel: (86-351)3176781,E-mail: wangxiaog1982@163.com
基金资助:
Wang Ying-Chao1, Ma Zi-Zai2, Wu Yi-Fan1, Wang Xiao-Guang1,2,*()
Received:
2021-04-14
Revised:
2021-05-18
Published:
2022-05-28
Online:
2021-06-10
摘要:
使用疏水性石墨烯复合粉末(GCP)为碳载体,通过硼氢化钠还原制备GCP载钯颗粒催化剂(PdNPs@GCP)进行氮还原反应(NRR)研究,在-0.2 V vs. RHE电位下,氨气产率为5.2 μg·h-1·mg-1,合成氨法拉第效率在-0.1 V vs. RHE电位下高达9.77%。通过与纯钯相和GCP对比研究发现,催化剂NRR活性主要得益于钯颗粒与GCP的构效关系。GCP二维结构提高了电子传输效率,并提供较大的比表面积,促进NRR动力学,同时GCP的疏水表面可以一定程度地抑制析氢反应(HER)。另外,GCP表面钯颗粒有利于氮气吸附活化,为NRR提供了丰富的活性位点,而且催化剂的金属-载体作用力微调钯颗粒电子结构,优化中间产物的吸脱附,加速NRR。
王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091.
Wang Ying-Chao, Ma Zi-Zai, Wu Yi-Fan, Wang Xiao-Guang. Preparation and Properties of GCP-Supported Palladium Particles Composite towards Electrochemical Ammonia Synthesis[J]. Journal of Electrochemistry, 2022, 28(5): 2104091.
[1] |
Fryzuk M D. Inorganic chemistry-ammonia transformed[J]. Nature, 2004, 427(6974): 498-499.
doi: 10.1038/427498a URL |
[2] |
Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stou-kides M. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158.
doi: 10.1016/j.joule.2019.10.006 URL |
[3] |
Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K, Jaramillo T F, Chorkendorff I, Nørskov J K. Electrochemical ammonia synthesis-the selectivity challenge[J]. ACS Catal., 2017, 7(1): 706-709.
doi: 10.1021/acscatal.6b03035 URL |
[4] |
Li W X, Fang W, Chen W, Dinh K N, Ren H, Zhao L, Liu C T, Yan Q Y. Bimetal-MOF nanosheets as efficient bifun-ctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J. Mater. Chem. A, 2020, 8(7): 3658-3666.
doi: 10.1039/C9TA13473E URL |
[5] |
Wu D S, Kusada K, Kitagawa H. Recent progress in the structure control of Pd-Ru bimetallic nanomaterials[J]. Sci. Technol. Adv. Mater., 2016, 17(1): 583-596.
doi: 10.1080/14686996.2016.1221727 URL |
[6] |
Wang R F, Wang H, Luo F, Liao S J. Core-shell-structured low-platinum electrocatalysts for fuel cell applications[J]. Electrochem. Energy Rev., 2018, 1(3): 324-387.
doi: 10.1007/s41918-018-0013-0 URL |
[7] |
Deng G R, Wang T, Alshehri A A, Alzahrani K A, Wang Y, Ye H J, Luo Y L, Sun X P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification[J]. J. Mater. Chem. A, 2019, 7(38): 21674-21677.
doi: 10.1039/C9TA06523G URL |
[8] |
Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nat. Commun., 2018, 9(1): 1795.
doi: 10.1038/s41467-018-04213-9 pmid: 29765053 |
[9] |
Chen K J, Liu K, An P D, Li H J W, Lin Y Y, Hu J H, Jia C K, Fu J W, Li H M, Liu H, Lin Z, Li W Z, Li J H, Lu Y R, Chan T S, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nat. Commun., 2020, 11(1): 4173.
doi: 10.1038/s41467-020-18062-y URL |
[10] |
Zhu D, Zhang L H, Ruther R E, Hamers R J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nat. Mater., 2013, 12(9): 836-841.
doi: 10.1038/nmat3696 pmid: 23812128 |
[11] | Li J(李佳), Yang C Z(杨传铮), Zhang X G(张熙贵), Zhang J(张建), Xia B J(夏保佳). XRD studies on the electrode materials in the charge-discharge process of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 battery[J]. Acta Phys. Sin.(物理学报), 2009, 58(9): 6573-6581. |
[12] |
Moussa S, Siamaki A R, Gupton B F, El-Shall M S. Pd-partially reduced graphene oxide catalysts: laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions[J]. ACS Catal., 2012, 2(1): 145-154.
doi: 10.1021/cs200497e URL |
[13] |
Liu Y, Sun G Z, Jiang C B, Zheng X T, Zheng L X, Li C M. Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles[J]. Microchim. Acta, 2014, 181(1-2): 63-70.
doi: 10.1007/s00604-013-1066-8 URL |
[14] |
Jeong G H, Choi D, Kang M, Shin J, Kang J G, Kim S W. One-pot synthesis of Au@Pd/graphene nanostructures: electrocatalytic ethanol oxidation for direct alcohol fuel cells[J]. RSC Adv., 2013, 3(23): 8864-8870.
doi: 10.1039/c3ra40505b URL |
[15] | Lin J(林健), Cui Y F(崔永福), Cui J L(崔金龙), Wen Z S(文钟晟), Sun J C(孙俊才). Electrochemical performance of SnS2/GCP microcomposite as anode material for lithium-ion battery[J]. Chin. J. Inorg. Chem. (无机化学学报), 2018, 34(1): 33-42. |
[16] |
Luo B, Fang Y, Wang B, Zhou J S, Song H H, Zhi L J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage[J]. Energy Environ. Sci., 2012, 5(1): 5226-5230.
doi: 10.1039/C1EE02800F URL |
[17] | Zhang H(张欢), Ni Z H(倪振华), Fan H M(樊海明). Study on charge transfer between Palladium nanosheets and graphene by Raman spectroscopy[C]. Chinese Physical Society, The 17th Chinese National Conference on Light Scattering, Xi’an, 2013. |
[18] |
Liao W R, Qi L, Wang Y L, Qin J Y, Liu G Y, Liang S J, He H Y, Jiang L L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance[J]. Adv. Funct. Mater., 2021, 31(22): 2009151.
doi: 10.1002/adfm.202009151 URL |
[19] |
Shi W, Zhang B S, Lin Y M, Wang Q, Zhang Q, Su D S. Enhanced chemoselective hydrogenation through tuning the interaction between Pt nanoparticles and carbon supports: insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy[J]. ACS Catal., 2016, 6(11): 7844-7854.
doi: 10.1021/acscatal.6b02207 URL |
[20] |
Lee H K, Koh C S L, Lee Y H, Liu C, Phang I Y, Han X M, Tsung C K, Ling X Y. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Sci. Adv., 2018, 4(3): eaar3208.
doi: 10.1126/sciadv.aar3208 URL |
[21] |
Yang Y J, Wang S Q, Wen H M, Ye T, Chen J, Li C P, Du M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angew. Chem. Int. Ed., 2019, 58(43): 15362-15366.
doi: 10.1002/anie.201909770 URL |
[22] |
Zhang J C, Zhao B, Liang W K, Zhou G S, Liang Z Q, Wang Y W, Qu J Y, Sun Y H, Jiang L. Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction[J]. Adv. Sci., 2020, 7(22): 2002630.
doi: 10.1002/advs.202002630 URL |
[23] |
Yuan S T, Huang X H, Wang H, Xie L J, Cheng J Y, Kong Q Q, Sun G H, Chen C M. Structure evolution of oxygen removal from porous carbon for optimizing super-capacitor performance[J]. J. Energ. Chem., 2020, 51: 396-404.
doi: 10.1016/j.jechem.2020.04.004 URL |
[24] |
Lv J L, Wu S L, Tian Z F, Ye Y X, Liu J, Liang C H. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction[J]. J. Mater. Chem. A, 2019, 7(20): 12627-12634.
doi: 10.1039/C9TA02045D URL |
[25] |
Li L(李琳), Ren H M(任慧敏), Wei B H(卫博慧), Li J(李军), Wang J(王杰), Li H(李晖), Yao C Z(姚陈忠). V-N Co-doped mesoporous carbon nanomaterials as catalysts for artificial N2 reduction[J]. Chin. J. Appl. Chem.(应用化学), 2020, 37(8): 930-938.
doi: 10.11944/j.issn.1000-0518.2020.00.200037 |
[26] |
Wu T X, Han M M, Zhu X G, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb3O7(OH) for ambient electrosynthesis of NH3[J]. J. Mater. Chem. A, 2019, 7(28): 16969-16978.
doi: 10.1039/C9TA05155D URL |
[27] |
Li Y Z, Yu Y, Wang J G, Song J, Li Q, Dong M D, Liu C J. CO oxidation over graphene supported palladium catalyst[J]. Appl. Catal. B: Environ., 2012, 125: 189-196.
doi: 10.1016/j.apcatb.2012.05.023 URL |
[28] |
Liu K, Fu J W, Zhu L, Zhang X D, Li H M, Liu H, Hu J H, Liu M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction[J]. Nanoscale, 2020, 12(8): 4903-4908.
doi: 10.1039/C9NR09117C URL |
[29] | Luo S J, Li X M, Gao W G, Zhang H Q, Luo M. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes[J]. Sustain. Energy Fuels, 2020, 4(1): 164-170. |
[30] |
Yu H J, Wang Z Q, Yin S L, Li C J, Xu Y, Li X N, Wang L, Wang H J. Mesoporous Au3Pd film on Ni foam: A self-supported electrocatalyst for efficient synthesis of ammonia[J]. ACS Appl. Mater. Inter., 2020, 12(1): 436-442.
doi: 10.1021/acsami.9b14187 URL |
[31] |
Rahaman M, Dutta A, Broekmann P. Size-Dependent activity of palladium nanoparticles: Efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017, 10(8): 1733-1741.
doi: 10.1002/cssc.201601778 pmid: 28101986 |
[32] |
Wang X G, Wang W M, Qi Z, Zhao C C, Ji H, Zhang Z H. Novel raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation[J]. Int. J. Hydrog. Energy, 2012, 37(3): 2579-2587.
doi: 10.1016/j.ijhydene.2011.11.016 URL |
[33] |
Smolenkov A D, Rodin I A, Shpigun O A. Spectrophotometric and fluorometric methods for the determination of hydrazine and its methylated analogues[J]. J. Anal. Chem., 2012, 67(2): 98-113.
doi: 10.1134/S1061934812020116 URL |
[34] |
Cao N, Zheng G F. Aqueous electrocatalytic N2 reduction under ambient conditions[J]. Nano Res., 2018, 11(6): 2992-3008.
doi: 10.1007/s12274-018-1987-y URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[7] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[8] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[9] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[10] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[11] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[12] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | 张静, 郭瑞霞, 浮建军, 尹诗斌, 沈培康, 张信义. Pt@BaSrTiO3纳米材料的制备及其光电化学合成氨性能的研究[J]. 电化学(中英文), 2022, 28(4): 2106161-. |
[15] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||