[1] |
Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175
URL
|
[2] |
Liu Z Y, Qi W J, Xu G B. Recent advances in electrochemiluminescence[J]. Chem. Soc. Rev., 2015,44(10):3117-3142.
doi: 10.1039/C5CS00086F
URL
|
[3] |
Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036.
pmid: 15186186
|
[4] |
Sakura S. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode[J]. Anal. Chim. Acta, 1992,262(1):49-57.
doi: 10.1016/0003-2670(92)80007-T
URL
|
[5] |
Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
doi: 10.1016/j.electacta.2016.02.175
URL
|
[6] |
Cao Y L, Yuan R, Chai Y Q, Mao L, Niu H, Liu H J, Zhuo Y. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling[J]. Biosens. Bioelectron., 2012,31(1):305-309.
doi: 10.1016/j.bios.2011.10.036
URL
|
[7] |
S Shkir M, Riscob B, Ganesh V, et al. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals [J]. Cryst. Growth, 2013,380:228-235.
doi: 10.1016/j.jcrysgro.2013.06.022
URL
|
[8] |
Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nodler K, Schulz M, Ternes T A, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle[J]. Water Res., 2020,175:115706.
doi: 10.1016/j.watres.2020.115706
URL
|
[9] |
Upadhyay N, Pujar M G, George R P, Philip J. Development of a sulfamic acid-based chemical formulation for effective cleaning of modified 9Cr-1Mo steel steam generator tubes[J]. Trans. Indian Inst. Met., 2020,73(2):343-352.
doi: 10.1007/s12666-019-01852-4
URL
|
[10] |
Winum J Y, Scozzafava A, Montero J L, Supuran C T. Sulfamates and their therapeutic potential[J]. Med. Res. Rev., 2005,25(2):186-228.
doi: 10.1002/(ISSN)1098-1128
URL
|
[11] |
B. Khalili, M. Rimaz, Tondro T. DFT study of N-substituted sulfamic acid derivatives acidity in aqueous media and gas phase[J]. Sci. Iran., 2014,21:2021-2028.
|
[12] |
Lin K N, Xu J, Dong X, Huo Y L, Yuan D X, Lin H, Zhang Y B. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method[J]. Microchem. J., 2020,158:105272.
doi: 10.1016/j.microc.2020.105272
URL
|
[13] |
Kim D S, Kang E S, Baek S, Choo S S, Chung Y H, Lee D, Min J, Kim T H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays[J]. Sci. Rep., 2018,8(1):14049.
doi: 10.1038/s41598-018-32477-0
URL
|
[14] |
Egaña L A, Cuevas R A, Baust T B, Parra L A, Leak R K, Hochendoner S, Peña K, Quiroz M, Hong W C, Dorostkar M M, Janz R, Sitte H H, Torres G E. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3[J]. J. Neurosci. Res., 2009,29(14):4592-4604.
|
[15] |
Stanwood G D. Chapter 9 - Dopamine and Stress[M] //Fink G (editor), Stress: Physiology, Biochemistry, and Pathology, Academic Press, 2019: 105-114.
|
[16] |
Khudaish E A, Al-Ajmi K Y, Al-Harthi S H, Al-Hinai A T. A solid state sensor based polytyramine film modified electrode for the determination of dopamine and ascorbic acid in a moderately acidic solution[J]. J. Electroanal. Chem., 2012,676:27-34.
doi: 10.1016/j.jelechem.2012.04.018
URL
|
[17] |
Colín-Orozco E, Ramírez-Silva M T, Corona-Avendaéo S, Romero-Romo M, Palomar-Pardavé M. Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7[J]. Electrochim. Acta, 2012,85:307-313.
doi: 10.1016/j.electacta.2012.08.081
URL
|
[18] |
Tang L J, Li S, Han F, Liu L Q, Xu L G, Ma W, Kuang H, Li A K, Wang L B, Xu C L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection[J]. Biosens. Bioelectron., 2015,71:7-12.
doi: 10.1016/j.bios.2015.04.013
URL
|
[19] |
Wei X, Zhang Z D, Wang Z H. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization[J]. Microchem. J., 2019,145:55-58.
doi: 10.1016/j.microc.2018.10.004
URL
|
[20] |
Ankireddy S R, Kim J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots[J]. Int. J. Nanomedicine, 2015,10:113-119.
|
[21] |
Huang H, Bai J, Li J, Lei L L, Zhang W J, Yan S J, Li Y X. Fluorescence detection of dopamine based on the polyphenol oxidase-mimicking enzyme[J]. Anal. Bioanal. Chem., 2020,412(22):5291-5297.
doi: 10.1007/s00216-020-02742-1
pmid: 32564120
|
[22] |
Wu B N, Miao C C, Yu L L, Wang Z Y, Huang C S, Jia N Q. Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine[J]. Sens. Actuators B Chem., 2014,195:22-27.
doi: 10.1016/j.snb.2014.01.012
URL
|
[23] |
Stewart A J, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine[J]. Anal. Chem., 2015,87(23):11847-11853.
doi: 10.1021/acs.analchem.5b03345
URL
|
[24] |
Peng H P, Deng H H, Jian M L, Liu A L, Bai F Q, Lin X H, Chen W. Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells[J]. Microchim. Acta, 2017,184(3):735-743.
doi: 10.1007/s00604-016-2058-2
URL
|
[25] |
Kim Y R, Bong S, Kang Y J, Yang Y, Mahajan R K, Kim J S, Kim H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25(10):2366-2369.
doi: 10.1016/j.bios.2010.02.031
URL
|
[26] |
Ma X Y, Chao M Y, Wang Z X. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode[J]. Anal. Methods, 2012,4(6):1687-1692.
doi: 10.1039/c2ay25040c
URL
|
[27] |
Li Z, Zhang H M, Zha Q B, Zhai C Y, Li W B, Zeng L X, Zhu M S. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black[J]. Microchim. Acta, 2020,187(9):526.
doi: 10.1007/s00604-020-04524-z
URL
|
[28] |
Venton B J, Cao Q. Fundamentals of fast-scan cyclic vol-tammetry for dopamine detection[J]. Analyst, 2020,145(4):1158-1168.
doi: 10.1039/C9AN01586H
URL
|
[29] |
Zhao H X, Mu H, Bai Y H, Yu H, Hu Y M. A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection[J]. J. Pharm. Anal., 2011,1(3):208-212.
doi: 10.1016/j.jpha.2011.04.003
URL
|
[30] |
Rao P S, Rujikarn N, Luber J M, Tyras D H. A specific sensitive HPLC method for determination of plasma dopamine[J]. Chromatographia, 1989,28(5):307-310.
doi: 10.1007/BF02260781
URL
|
[31] |
Wen D, Liu W, Herrmann A K, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J]. Small, 2016,12(18):2439-2442.
doi: 10.1002/smll.201503874
URL
|
[32] |
Kong B, Zhu A W, Luo Y P, Tian Y, Yu Y Y, Shi G Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition[J]. Angew. Chem. Int. Ed., 2011,50(8):1837-1840.
doi: 10.1002/anie.v50.8
URL
|
[33] |
Kaya M, Volkan M. New approach for the surface enhanced resonance raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid[J]. Anal. Chem., 2012,84(18):7729-7735.
doi: 10.1021/ac3010428
URL
|
[34] |
Figueiredo M L B, Martin C S, Furini L N, Rubira R J G, Batagin-Neto A, Alessio P, Constantino C J L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species[J]. Appl. Surf. Sci., 2020,522:146466.
doi: 10.1016/j.apsusc.2020.146466
URL
|
[35] |
Kitte S A, Wang C, Li S P, Zholudov Y, Qi L M, Li J P, Xu G B. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant[J]. Anal. Bioanal. Chem., 2016,408(25):7059-7065.
doi: 10.1007/s00216-016-9409-z
URL
|
[36] |
Hui P, Zhang L, Gao W Y, Zuo H J, Qi L M, Kitte S A, Li Y H, Xu G B. Detection of sodium dehydroacetate by Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence[J]. ChemElectroChem., 2017,4(7):1702-1707.
doi: 10.1002/celc.v4.7
URL
|
[37] |
Fereja T H, Wang C, Liu F S, Guan Y R, Xu G B. A high-efficiency cathodic sodium nitroprusside/luminol/H2O2 electrochemiluminescence system in neutral media for the detection of sodium nitroprusside, glucose, and glucose oxidase[J]. Analyst, 2020,145(20):6649-6655.
doi: 10.1039/D0AN01178A
URL
|
[38] |
Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues[J]. Luminescence, 2011,26(6):685-688.
doi: 10.1002/bio.1296
pmid: 21491580
|
[39] |
Gao W Y, Wang C, Muzyka K, Kitte S A, Li J P, Zhang W, Xu G B. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector[J]. Anal. Chem., 2017,89(11):6160-6165.
doi: 10.1021/acs.analchem.7b01000
URL
|
[40] |
Fereja T H, Kitte S A, Gao W Y, Yuan F, Snizhko D, Qi L M, Nsabimana A, Liu Z Y, Xu G B. Artesunate-luminol chemiluminescence system for the detection of hemin[J]. Talanta, 2019,204:379-385.
doi: 10.1016/j.talanta.2019.06.007
URL
|
[41] |
Buettner G R, Ng C F, Wang M, Rodgers V G J, Schafer F Q. A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state[J]. Free Radical Biol. Med., 2006,41(8):1338-1350.
doi: 10.1016/j.freeradbiomed.2006.07.015
URL
|
[42] |
Khaket T P, Ahmad R. Biochemical studies on hemoglobin modified with reactive oxygen species (ROS)[J]. Appl. Biochem. Biotechnol., 2011,164(8):1422-1430.
doi: 10.1007/s12010-011-9222-2
URL
|
[43] |
Rowley D, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease[J]. Clin. Sci., 1983,64(6):649-653.
pmid: 6301745
|
[44] |
Whitman C L. Titrimetric determination of sulfamic acid[J]. Anal. Methods, 1957,29(11):1684-1685.
|
[45] |
Wahba M E K, El-Enany N, Belal F. Application of the Stern-Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations[J]. Anal. Methods, 2015,7(4):10445-10451.
doi: 10.1039/C3AY42093K
URL
|
[46] |
Gong A Q, Zhu X S, Hu Y Y, Yu S H. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application[J]. Talanta, 2007,73(4):668-673.
doi: 10.1016/j.talanta.2007.04.041
URL
|
[47] |
Parajuli S, Jing X H, Miao W J. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)32+/TPrA system by the explosive TNT[J]. Electrochim. Acta, 2015,180:196-201.
doi: 10.1016/j.electacta.2015.08.107
URL
|