[1] Bertolino C., MacSweeney M., Tobin J., et al. A monolithic silicon based integrated signal generation and detection system for monitoring DNA hybridisation[J], Biosensors and Bioelectronics, 2005, 21(4): 565-573.
[2] Rivera V. R., Gamez F.J., Keener W.K., et al. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection[J], Analytical Biochemistry, 2006, 353 (2): 248-256.
[3] Huang B.M., Zhou X.B., Xue Z.H., et al. Quenching of the electrochemiluminescence of Ru(bpy)32+/TPA by malachite green and crystal violet[J], Talanta, 2013, 106 (6): 174-180.
[4] Luo L.R., Zhang Z.J., Chen L.J., et al. Chemiluminescent imaging detection of staphylococcal enterotoxin C1 in milk and water samples[J], Food Chemistry, 2006, 97 (2): 355-360.
[5] Wu L., Wang J.S., Feng L.Y., et al. Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique[J], Advanced Materials, 2012, 24 (18) : 2447-2452.
[6] Shan D., Qian B., Ding S. N., et al. Enhanced solid-state electrochemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat[J], Analytical Chemistry, 2010, 82 (13): 5892-5896.
[7] Nepomnyashchii A.B., Kolesov G., Parkinson B.A. Electrogenerated chemiluminescence of BODIPY, Ru(bpy)32+, and 9,10-diphenylanthracene using interdigitated array electrodes[J], ACS Applied Materials & Interfaces, 2013, 5 (13): 5931-5936.
[8] Lu X.Q., Liu D., Du J., et al. Novel cathodic electrochemiluminescence of tris(bipyridine) ruthenium(II) on a gold electrode in acidic solution[J], Analyst, 2012, 137 (3): 588-594.
[9] Lu X.Q., Wang H.F., Du J., et al. Self-quenching in the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) using metabolites of catecholamines as co-reactants, Analyst, 2012, 137 (6): 1416-1420.
[10] Garcia-Segura S., Centellas F., Brillas E. Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode enhancement by electrogenerated superoxide radical anion[J], Journal of Physical Chemistry C, 2012, 116 (29): 15500-15504.
[11] Wang D.M., Zhang Y., Zheng L.L., et al. Singlet oxygen involved luminol chemiluminescence catalyzed by graphene oxide[J], Journal of Physical Chemistry C, 2012, 116 (40): 21622-21628.
[12] Shao K., Wang B. R., Ye S. Y., et al. Signal-Amplified Near-Infrared Ratiometric Electrochemiluminescence Aptasensor Based on Multiple Quenching and Enhancement Effect of Graphene/Gold Nanorods/G-Quadruplex[J], Analytical Chemistry, 2016, 88(16): 8179-8187.
[13] Ma G. Z., Zhou J.Y., Tian C.X., et al. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells[J], Analytical Chemistry, 2013, 85 (8): 3912-3917.
[14] Wang D., Gao M.X., Gao P.F., et al. Carbon nanodots-catalyzed chemiluminescence of luminol: a singlet oxygen-induced mechanism[J], Journal Physical Chemistry C, 2013, 117 (37): 19219-19225.
[15] Legg K.D., Hercules D.M. Electrochemically generated chemiluminescence of lucigenin[J], Journal of American Chemical Society, 1969, 91 (8): 1902-1907.
[16] Okajima T., Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants[J], Journal of Electroanalytical Chemistry, 2002, 534 (2): 181-187.
[17] Guo J.Z., Cui H., Xu S.L., et al. A new electrogenerated chemiluminescence peak of lucigenin in the hydrogen-evolution region induced by platinum nanoparticles[J], Journal of Physical Chemistry C, 2006, 111 (2): 606-611.
[18] Littigt J.S., Nieman T.A. Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection[J], Analytical Chemistry, 1992, 64 (10): 1140-1144.
[19] Yang M. L., Liu C.Z., Hu X. H., et al. Electrochemiluminescence assay for the detection of acridinium esters[J], Analytica Chimica Acta, 2002, 461 (1): 141-146.
[20] Deng S.Y., Lei J. P., Huang Y., et al. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin[J], Analytical Chemistry, 2013, 85 (11): 5390-5396.
[21] Wang Y., Lu J., Tang L. H., et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J], Analytical Chemistry, 2009, 81 (23): 9710-9715.
[22] Bao L., Sun L.F., Zhang Z. L., et al. Energy-level-related response of cathodic electrogenerated-chemiluminescence of self-assembled CdSe/ZnS quantum dot films[J], Journal of Physical Chemical C, 2011, 115 (38): 18822-18828.
[23] Winkelman J. The distribution of tetraphenylporphinesulfonate in the rumor-bearing rat[J], Cancer Research, 1962, 22 (5): 589-596.
[24] Gomer C.J., Rucker N., Ferrario A., et al. Properties and applications of photodynamic therapy[J], Radiation Research, 1989, 120 (1): 1-18.
[25] Engst P., Kubát P., Jirsa M. The influence of D2O on the photophysical properties of meso-tetra (4-sulphonatophenyl) porphine, Photosan III and tetrasulphonated aluminium and zinc phthalocyanines[J], Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78 (3): 215-219.
[26] Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J], Chemical Society Reviews, 1995, 24 (1): 19-33.
[27] Chen F.C., Ho J.H., Chen C.Y., et al. Electrogenerated chemiluminescence of sterically hindered porphyrins in aqueous media[J], Journal of Electroanalytical Chemistry, 2001, 499 (1): 17-23.
[28] Sagara T., Iizuka J., Niki K. Electroreflectance study of the redox reaction of methylene blue adsorbed on a pyrolytic graphite electrode[J], Langmuir 1992, 8 (3), 1018-1025.
[29] Ju H. X., Zhou J., Cai C. X., et al. The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode[J], Electroanalysis 1995, 7 (12), 1165-1170.
[30] Zhu N. N., Zhang A. P. , Wang Q. J., et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes[J], Analytica. Chimica. Acta, 2004, 510 (2), 163-168.
[31] Erdem A., Kerman K., Meric B., et al. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus[J], Analytica. Chimica. Acta, 2000, 422 (2), 139-149.
[32] Zhao G. C., Zhu J. J., Zhang J. J., et al. Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin[J], Analytica. Chimica. Acta, 1999, 394 (2-3), 337-344.
[33] Nishisaka T., Ennyu H., Takeno T., et al. Photodynamic therapy with methylene blue as photosensitizer[J], Bulletin of The Chemical Society of Japan, 1993, 7, 867-873.
[34] Li W. L.(李五林), Ye F. Q.(叶发青). The improvement of method of content of methylene blue [J], Journal of Mathematical Medicine,(数理医药学杂志) 1995, 8 (4), 334-336.
[35] Lu Y. M.(陆益民). Determination of Methylenblue by Two-Point pot en Tiometric Titration [J], Physical Testing and Chemical Analysis Part B Chemical Analysis, (理化检验: 化学分册) 2005, 41 (8), 580-581.
[36] Yang Q., Hu Y. J., Wei Y. C., et al. In situ detection of methylene blue in tissues by laser desorption vacuum ultraviolet single photon postionization mass spectrometry[J], International Journal of Mass Spectrometry, 2013, 353 (11), 12-18.
[37]Li G. C.(李国成). Study on Synthesis of Water Soluble Amino and Sulfonato Substituted Tetraphenylporphyrin [D], Chang Sha(长沙): Hunan University(湖南大学), 2005年.
[38] Lu X.Q., Wang H.F., Du J., et al. Self-quenching in the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) using metabolites of catecholamines as co-reactants[J], Analyst, 2012, 137 (6), 1416-1420.
[39] Liu X.Q., Shi L.H., Niu W.X., et al. Environmentally friendly and highly sensitive ruthenium(II) tris (2, 2'-bipyridyl) electroch emiluminescent system using 2-(dibutylamino) ethanol as co-reactant[J], Angewandte Chemie International Edition 2007, 119 (3),, 425-428.
[40] White H.S., Bard A.J. Electrogenerated chemiluminescence. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J], Journal of The American Chemical Society, 1982, 104 (25), 6891-6895.
[41] Zhang H. R., Xu J. J., Chen H. Y. Electrochemiluminescence ratiometry: a new approach to DNA biosensing[J], Analytical Chemistry, 2013, 85 (11), 5321-5325.
[42] Miao W. J. Electrogenerated chemiluminescence and its biorelated applications[J], Chemical Reviews, 2008, 108 (7), 2506-2553.
[43] Richter M. M., Bard A. J., Kim W., et al. Electrogenerated chemiluminescence Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores[J], Analytical Chemistry, 1998, 70 (2), 310-318.
[44] Richards T. C., Bard A. J. Electrogenerated chemiluminescence Emission from sodium 9,10-diphenylanthracene-2-sulfonate, thianthrenecarboxylic acids, and chlorpromazine in aqueous media[J], Analytical Chemistry, 1995, 67 (18), 3140-3147.
[45] Richter M. M. Electrochemiluminescence (ECL) [J], Chemical Reviews, 2004, 104 (6), 3003-3036.
[46] Amelia M., Lincheneau C., Silvi S., et al. Electrochemical properties of CdSe and CdTe quantum dots[J], Chemical Society Reviews, 2012, 41 (17), 5728-5743.
[47] Yang S. L., Liang J. S., Luo S. L., et al. Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene[J], Analytical Chemistry, 2013, 85 (16), 7720-7725. |