[1] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batterie[J]. Nature, 2001,414(6861):359-367.
pmid: 11713543
|
[2] |
Li Q X(李巧霞), Mao H M(毛宏敏), Liu M S(刘明爽), Xu Q J(徐群杰). Status quo and prospect in hard carbon anode material for lithium ion battery[J]. J. Shanghai Univ. Electric. Power(上海电力学院学报) 2014,30(1):75-78.
|
[3] |
Guan Y B(官亦标), Shen J R(沈进冉), Li K L(李康乐), Xu B(徐斌). Research progress on capacitive liithium-ion battery[J]. Energy Storage Sci. & Technol.(储能科学与技术) 2019,8(5):799-806.
|
[4] |
Wu M H(武明昊), Chen J(陈剑), Wang C(王崇), Yi B L(衣宝廉). Research progress in anode materials for Li-ion battery[J]. Battery(电池) 2011,4(4):222-225.
|
[5] |
Yang G(杨果), Ma Z(马壮), Yang S B(杨绍斌), Shen D(沈丁). Synjournal of phenolic resin hard carbon with low specific surface area and its electrochemical properties[J]. Mater. Rev.(材料导报) 2019,33(22):3820-3824.
|
[6] |
Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Li T Q, Han Y, Wang Y S, Tian J, Lin N, Qian Y T. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Adv. Energy Mater., 2019,9(34):1901676.
doi: 10.1002/aenm.v9.34
URL
|
[7] |
Gong J, Wu H, Yang Q. Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly(p-phenylene) below 1000 ℃ for the anode of a lithium-ion battery[J]. Carbon, 1999,37(9):1409-1416.
doi: 10.1016/S0008-6223(99)00002-0
URL
|
[8] |
Han Y J, Hwang J U, Kim K S, Kim J H, Lee J D, Im J S. Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs[J]. J. Ind. Eng. Chem., 2019,73(73):241-247.
doi: 10.1016/j.jiec.2019.01.031
URL
|
[9] |
Guo Z H, Wang C Y, Chen M M, Li M W. Hard carbon derived from coal tar pitch for use as the anode material in lithium ion batteries[J]. Int. J. Electrochem. Sci., 2013,8(8):2702-2709.
|
[10] |
Concheso A, Santamaría R, Granda M, Menendez R, Jimenez-Mateos J M, Alcantara R, Lavela P, Tirado J L. Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries[J]. Electrochim. Acta, 2005,50(5):1225-1232.
doi: 10.1016/j.electacta.2004.07.054
URL
|
[11] |
Fromm O, Heckmann A, Rodehorst U C, Frerichs J, Becker D, Winter M, Placke T. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018,128(128):147-163.
doi: 10.1016/j.carbon.2017.11.065
URL
|
[12] |
Nishi Y. Carbonaceous materials for lithium ion secondary battery anodes[J]. Mol. Cryst. Liq. Cryst., 2000,340(1):419-424.
doi: 10.1080/10587250008025503
URL
|
[13] |
Yan J(颜剑), Su Y S(苏玉长), Su J T(苏继桃), Lu P T(卢普涛). Research progress on anode materials for lithium-ion batteries[J]. Chinese Battery Ind.(电池工业) 2006,11(4):277-281.
|
[14] |
Chen K H, Vishwas G, Min J N, Wied M, Muller S, Wood V, Sakamoto J, Thornton K, Dasgupta N P. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Adv. Energy Mater., 2020,9(13):2003336.
|
[15] |
Yu H Y, Liang H J, Gu Z Y, Meng Y F, Yang M, Yu M X, Zhao C D, Wu X L. Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries[J]. Electrochim. Acta, 2020,361(361):137041.
doi: 10.1016/j.electacta.2020.137041
URL
|
[16] |
Lin X Y, Liu Y Z, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020,157(157):316-323.
doi: 10.1016/j.carbon.2019.10.045
URL
|
[17] |
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Sodium ion insertion in hollow carbon nanowires for battery[J]. Nano Lett., 2012,12(7):3783-3787.
doi: 10.1021/nl3016957
URL
|
[18] |
Saurel D, Orayech B, Xiao B W, Carriazo D, Li X L, Rojo T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Adv. Energy Mater., 2018,8(17):1703268.
doi: 10.1002/aenm.v8.17
URL
|
[19] |
Xiao L F, Lu H Y, Fang Y J, Sushko M L, Cao Y L, Ai X P, Yang H X, Liu J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Adv. Energy Mater., 2018,8(20):1703238.
doi: 10.1002/aenm.201703238
URL
|
[20] |
Qiu S, Xiao L F, Sushko M L, Han K S, Shao Y Y, Yan M Y, Liang X M, Mai L Q, Feng J W, Cao Y L, Ai X P, Yang H X, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017,7(17):1700403.
doi: 10.1002/aenm.201700403
URL
|
[21] |
Alvin S, Setiadi H S, Hwang J, Chang W, Kwak S K, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Adv. Energy Mater., 2020,10(20):2000283.
doi: 10.1002/aenm.v10.20
URL
|