电化学(中英文) ›› 2020, Vol. 26 ›› Issue (3): 347-358. doi: 10.13208/j.electrochem.190428
王来玉1, 奚馨1, 吴东清2, 刘雄宇1, 纪伟1, 刘瑞丽1*()
收稿日期:
2019-04-28
修回日期:
2019-08-02
出版日期:
2020-06-28
发布日期:
2019-11-06
通讯作者:
刘瑞丽
E-mail:ruililiu@sjtu.edu.cn
WANG Lai-yu1, XI Xin1, WU Dong-qing2, LIU Xiong-yu1, JI Wei1, LIU Rui-li1*()
Received:
2019-04-28
Revised:
2019-08-02
Published:
2020-06-28
Online:
2019-11-06
Contact:
LIU Rui-li
E-mail:ruililiu@sjtu.edu.cn
Supported by:
摘要:
柔性生物传感器在可穿戴电子设备中有着广泛的应用前景. 为了获得柔性电化学多巴胺传感器,作者在本工作中首先在镍泡沫表面通过化学气相沉积生长石墨烯,随后通过高温碳化嵌段共聚物与酚醛树脂在石墨烯表面共组装形成的薄膜制备了有序介孔碳/石墨烯/镍泡沫(OMC/G/Ni)复合材料. 其中,镍泡沫可以为复合材料提供具有高导电性和良好柔韧性的金属骨架,而具有垂直排列介孔阵列的有序介孔碳层为复合材料提供了高的电活性表面积,且有利于活性位点的暴露. 值得注意的是,夹在有序介孔碳层和镍泡沫之间的石墨烯极大地增强了各组分之间的相容性,有利于进一步提升复合材料的电化学性能. 作为电化学传感器中的工作电极,OMC/G/Ni体现出优异的多巴胺检测能力. 不但具有宽的线性检测范围(0.05 ~ 58.75 μmol·L-1)和低检测限(0.019 μmol·L-1),还具有良好的选择性、重现性和稳定性. 此外,OMC/G/Ni在弯曲状态下依旧能够保持对多巴胺的高检测能力,证明了其在柔性生物传感器中的应用潜力.
中图分类号:
Support info: /attached/file/20200709/20200709111901_223.pdf
王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358.
WANG Lai-yu, XI Xin, WU Dong-qing, LIU Xiong-yu, JI Wei, LIU Rui-li. Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible Dopamine Detection with Ultrahigh Sensitivity and Selectivity[J]. Journal of Electrochemistry, 2020, 26(3): 347-358.
Fig. 1
The schematic illustration of the fabrication processes for the flexible OMC/G/Ni electrode. a) the CVD process for the preparation of graphene wrapped Ni foam (G/Ni); b) the deposition of resol-F127 monomicelles on the surface of G/Ni; c) the carbonization of the monomicelle/G/Ni composite to produce OMC/G/Ni.
Fig. 5
A) DPV curves of OMC/G/Ni in PBS (0.1 mol·L-1, pH = 7.4) solution with the DA concentrations in the range of 0 ~ 30 μmol·L-1. B) Magnified DPV curves with the DA concentrations of 0, 0.05, 0.15, 0.3, 0.5, and 1.0 μmol·L-1. C) Calibration plot of the peak current to DA concentration. D) The amperometric (i-t) curve of OMC/G/Ni upon addition of DA at 0.2 V. Inset: Magnified i-t curve upon the addition of DA at 0.05, 0.2 and 0.5 μmol·L-1. E) Calibration plot of i-t current to the DA concentration. F) Amperometric responses of OMC/G/Ni with the successive injections of DA, Glucose, UA, NaCl, AA, DA and DA (All the concentrations of the added analytes are 10 μmol·L-1 in the resulting PBS).
Fig. S6
The high-resolution XPS C 1s spectra of OMC/G/Ni. The peaks at 284.9, 284.4, 286.6, 287.6 and 288.7 eV can be attributed to the C-C, C=C, C-O, C=O, and O=C-O groups in the OMC/G/Ni electrode. The atomic percentages of these groups are 22.8% (C-C), 70.7% (C=C), 4.0% (C-O), 0.5% (C=O) and 2.0% (O-C=O), respectively.
Fig. 6
Stability tests of the OMC/G/Ni electrode. A) CV profiles for 100 scanning cycles at a scan rate of 50 mV·s-1; B) Current responses every other day in PBS (0.1 mol·L-1, pH = 7.4) with DA (50 μmol·L-1). C) CV curves under different bent states; D) Photograph showing the slightly bent electrode.
Tab. S1
The electrochemical DA detection performances of OMC/G/Ni and the recently reported flexible electrodes
Sample | Method | Linear range/ (μmol·L-1) | Detection limit/ (μmol·L-1) | Selectivity | Ref. |
---|---|---|---|---|---|
pHQ/AuNPs/Ni | DPV | 0.1-10 | 0.04 | AA | [1] |
N,P-co-doped carbon cloth | DPV | 2-200 | 0.6 | AA, UA, GCa | [2] |
Graphite/plastic | Amperob | 10-550 | 3 | AA, UA | [3] |
Eox-SWCNT/PET | DPV | 1.5-30 | 0.51 | AA, UA, GC | [4] |
Tyrosinase/NiO/ITO | CV | 2-100 | 1.038 | _ | [5] |
PE | DPV | 30-100 | 5.2 | _ | [6] |
OMC/CSF | Ampero | 0.2-80 | 0.11 | AA, UA, GC | [7] |
OMC/G/Ni | Ampero | 0.05-58.75 | 0.019 | AA, UA, GC | This work |
[1] |
Diaz-Diestra D, Thapa B, Beltran-Huarac J, et al. L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosensors & Bioelectronics, 2017,87:693-700.
URL pmid: 27631684 |
[2] | Guan L H( 关利浩), Wang C( 王超), Zhang W( 张望), et al. A facile strategy for two-step fabrication of gold nanoelectrode for in vivo dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2019,25(2):244-251. |
[3] |
Taylor I M, Robbins E M, Catt K A, et al. Enhanced dopa-mine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes[J]. Biosensors and Bioelectronics, 2017,89:400-410.
doi: 10.1016/j.bios.2016.05.084 URL pmid: 27268013 |
[4] | Dong P F( 董鹏飞), Li N( 李娜), Zhao H Y( 赵海燕), et al. Synjournal of keggin polyoxometalates modified carbon paste electrode as a sensor for dopamine detection[J]. Journal of Electrochemistryl( 电化学), 2018,24(5):555-562. |
[5] |
Huang S, Song S S, Yue H Y, et al. ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid[J]. Sensors and Actuators B: Chemical, 2018,277:381-387.
doi: 10.1016/j.snb.2018.09.040 URL |
[6] | Chen P Y, Vittal R, Nien P C, et al. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion[J]. Biosensors and Bio-electronics, 2009,24(12):3504-3509. |
[7] |
Gao G, Zhang Z K, Wang K, et al. One-pot synjournal of dendritic Pt3Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection[J]. Nanoscale, 2017,9(31):10998-11003.
doi: 10.1039/c7nr03760k URL pmid: 28752884 |
[8] |
Chen J L, Yan X P, Meng K, et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine[J]. Analytical Chemistry, 2011,83(22):8787-8793.
doi: 10.1021/ac2023537 URL |
[9] |
Qu K G, Wang J S, Ren J S, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine[J]. Chemistry - A European Journal, 2013,19(22):7243-7249.
doi: 10.1002/chem.v19.22 URL |
[10] |
Cheuk M Y, Lo Y C, Poon W T. Determination of urine catecholamines and metanephrines by reversed-phase liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatograph, 2017,35(10):1042-1047.
doi: 10.3724/SP.J.1123.2017.06011 URL |
[11] | Tang L J, Li S, Han F, et al. SERS-active Au@Ag nano-rod dimers for ultrasensitive dopamine detection[J]. Bio-sensors and Bioelectronics, 2015,71:7-12. |
[12] |
Zan X L, Bai H W, Wang C X, et al. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells[J]. Chemistry - A European Journal, 2016,22(15):5204-5210.
doi: 10.1002/chem.201504454 URL |
[13] |
Das A K, Kuchi R, Van P C, et al. Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine[J]. RSC Advances, 2018,8(54):31037-31047.
doi: 10.1039/C8RA05885G URL |
[14] | Yang Y R, Gao W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chemical Society Re-views, 2019,48(6):1465-1491. |
[15] |
Cai W H, Lai T, Du H J, et al. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor[J]. Sensors and Actuators B: Chemical, 2014,193:492-500.
doi: 10.1016/j.snb.2013.12.004 URL |
[16] |
Hsu M S, Chen Y L, Lee C Y, et al. Gold nanostructures on flexible substrates as electrochemical dopamine sensors[J]. ACS Applied Materials & Interfaces, 2012,4(10):5570-5575.
doi: 10.1021/am301452b URL pmid: 23020235 |
[17] |
Liu J, He Z M, Xue J W, et al. A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing[J]. Journal of Materials Chemistry B, 2014,2(17):2478-2482.
doi: 10.1039/c3tb21355b URL |
[18] |
Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011,10(6):424-428.
doi: 10.1038/nmat3001 URL pmid: 21478883 |
[19] |
Fang Y, Gu D, Zou Y, et al. a low-concentration hydrothermal synjournal of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie International Edition, 2010,49(43):7987-7991.
doi: 10.1002/anie.201002849 URL pmid: 20839199 |
[20] |
Sajid M, Nazal M K, Mansha M, et al. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J]. TrAC Trends in Analytical Chemistry, 2016,76:15-29.
doi: 10.1016/j.trac.2015.09.006 URL |
[21] |
Ndamanisha J C, Guo L P. Ordered mesoporous carbon for electrochemical sensing: A review[J]. Analytica Chimica Acta, 2012,747:19-28.
doi: 10.1016/j.aca.2012.08.032 URL pmid: 22986131 |
[22] |
Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials, 2005,17(18):4577-4593.
doi: 10.1021/cm0485658 URL |
[23] |
Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications, 2008,10(6):859-863.
doi: 10.1016/j.elecom.2008.03.008 URL |
[24] |
Yan X, Bo X J, Guo L P. Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode[J]. Sensors and Actuators B: Chemical, 2011,155(2):837-842.
doi: 10.1016/j.snb.2011.01.058 URL |
[25] |
Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical pro-perties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications, 2007,9(2):233-238.
doi: 10.1016/j.elecom.2006.08.050 URL |
[26] |
Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors[J]. Biosensors and Bioelectronics, 2008,24(3):442-447.
doi: 10.1016/j.bios.2008.04.025 URL pmid: 18541421 |
[27] | Ya Y, Wang T S, Xie L P, et al. Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim[J]. Analytical Methods, 2015,7(4):1493-1498. |
[28] | Zhu G Y, He Z, Chen J, et al. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode[J]. Nano-scale, 2014,6(2):1079-1085. |
[29] |
Chae S J, Günes F, Kim K K, et al. Synjournal of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation[J]. Advanced Materials, 2009,21(22):2328-2333.
doi: 10.1002/adma.v21:22 URL |
[30] | Liu R L, Wan L, Liu S Q, et al. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors[J]. Advanced Functional Materials, 2015,25(4):526-533. |
[31] | Xi X, Wu D Q, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores[J]. ACS Nano, 2018,12(6):5436-5444. |
[32] |
Fang Y, Lv Y Y, Che R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synjournal and efficient lithium ion storage[J]. Journal of the American Chemical Society, 2013,135(4):1524-1530.
URL pmid: 23282081 |
[33] | Bai Y, Wang W Q, Wang R R, et al. Controllable synjournal of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(23):12530-12538. |
[34] | Dong X C, Ma Y W, Zhu G Y, et al. Synjournal of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing[J]. Journal of Materials Chemistry, 2012,22(33):17044-17048. |
[35] | Yu M, Chen J P, Liu J H, et al. Mesoporous NiCO2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation[J]. Electro-chimica Acta, 2015,151:99-108. |
[36] | He P, Yu X Y, Lou X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angew-andte Chemie International Edition, 2017,56(14):3897-3900. |
[37] |
Wang X L, Li Q, Pan H Y, et al. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction[J]. Nanoscale, 2015,7(47):20290-20298.
doi: 10.1039/c5nr05864c URL pmid: 26579622 |
[38] | Shen Y, Sheng Q L, Zheng J B. A high-performance electrochemical dopamine sensor based on a platinum-nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite[J]. Analytical Met-hods, 2017,9(31):4566-4573. |
[39] | Fan H Q, Quan L X, Yuan M Q, et al. Thin Co3O4 nano-sheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2016,188:222-229. |
[40] | Walcarius A. Recent trends on electrochemical sensors based on ordered mesoporous carbon[J]. Sensors, 2017,17(8):1863. |
[41] | Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B: Chemical, 2016,227:488-496. |
[42] | Liu X Y, Xi X, Chen C L, et al. Ordered mesoporous carbon-covered carbonized silk fabrics for flexible electrochemical dopamine detection[J]. Journal of Materials Che-mistry B, 2019,7(13):2145-2150. |
[43] |
Jothi L, Neogi S, Jaganathan S K, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons[J]. Biosensors and Bioelectronics, 2018,105, 236-242.
doi: 10.1016/j.bios.2018.01.040 URL pmid: 29412948 |
[44] | Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications, 2009,11(4):889-892. |
[45] | Numan A, Shahid M M, Omar F S, et al. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sensors and Actuators B: Chemical, 2017,238:1043-1051. |
[46] |
Thanh T D, Balamurugan J, Lee S H, et al. Effective seed-assisted synjournal of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine[J]. Biosensors and Bioelectronics, 2016,81:259-267.
doi: 10.1016/j.bios.2016.02.070 URL pmid: 26967913 |
[47] |
Gao W, Emaminejad S, Nyein H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016,529(7587):509-514.
URL pmid: 26819044 |
[48] | Li S J, He J Z, Zhang M J, et al. Electrochemical detection of dopamine using water-soluble sulfonated graphene[J]. Electrochimica Acta, 2013,102:58-65. |
[1] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[2] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
[3] | 张运丰, 董佳明, 谭畅, 霍士康, 王佳颖, 何阳, 王雅莹. Li-SGO掺杂半互穿网络型多孔单离子传导聚合物复合电解质的制备[J]. 电化学(中英文), 2021, 27(1): 108-117. |
[4] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[5] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[6] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[7] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
[8] | 姚硕, 黄太仲, RizwanHaider, 房恒义, 于洁玫, 姜占坤, 梁栋, 孙玥, 原鲜霞. NiO@rGO负载钯、银纳米粒子用作氧还原催化剂[J]. 电化学(中英文), 2020, 26(2): 270-280. |
[9] | 张 波, 刘 佳, 刘晓晨, 李德军. 硫在不同碳载体材料中的电化学性能研究[J]. 电化学(中英文), 2019, 25(6): 749-756. |
[10] | 杨 娟, 郎俊伟, 张 鹏, 刘 宝. 高温驱动氧化锰刻蚀制备纳米氧化锰-多孔石墨烯及其锂空气电池性能研究[J]. 电化学(中英文), 2019, 25(5): 621-630. |
[11] | 李二岭, 杨 发, 阮明波, 宋 平, 徐维林. Fe-N共掺杂纳米碳材料的形貌对电化学还原反应的影响[J]. 电化学(中英文), 2019, 25(4): 486-496. |
[12] | 酒琳娜, 程永强. 二氧化钛纳米颗粒/还原氧化石墨烯修饰玻碳电极在对硝基苯酚检测中的应用[J]. 电化学(中英文), 2019, 25(4): 504-510. |
[13] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
[14] | 夏永康, 顾明远, 杨红官, 于馨智, 鲁兵安. CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学(中英文), 2019, 25(1): 89-103. |
[15] | 修陆洋,于梦舟,杨鹏举,王治宇,邱介山. 基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂[J]. 电化学(中英文), 2018, 24(6): 715-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||