[1] |
Horowitz Y, Han H L, Soto F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes: electrolyte interface structure probed by sum frequency vibrational spectroscopy and ab initio molecular dynamics[J]. Nano Letters, 2018,18(2):1145-1151.
URL
pmid: 29251510
|
[2] |
Veith G M, Doucet M, Sacci R L, et al. Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive[J]. Scientific Reports, 2017,7(1):1-15.
URL
pmid: 28127051
|
[3] |
Schiele A, Breitung B, Hatsukade T, et al. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Letters, 2017,2(10):2228-2233.
|
[4] |
Choi N S, Yew K H, Kim H, et al. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte[J]. Journal of Power Sources, 2007,172(1):404-409.
|
[5] |
Song H Y, Jeong S K. Surface film formation on graphite in propylene carbonate solution containing lithium bis (oxalate) borate[J]. Journal of Nanoscience & Nanotechnology, 2016,16(10):10583-10587.
|
[6] |
Lee S J, Han J G, Lee Y, et al. A bi-functional lithium difluoro(oxalato) borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures[J]. Electrochimica Acta, 2014,137:1-8.
|
[7] |
Dalavi S, Guduru P, Lucht B L. Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes[J]. Journal of The Electrochemical Society, 2012,159(5):A642-A646.
|
[8] |
上田敦史, 岩本和也, 芳泽浩司. 非水电解质电池和非水电解液: 中国专利, CN1316791A[P/OL]. 2001-10-10.
|
[9] |
Chang Z H, Wang J T, Wu Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018,11(11):1787-1796.
doi: 10.1002/cssc.201800480
URL
pmid: 29673129
|
[10] |
Chang Z H, Li X, Yun F L, et al. Effect of dual-salt concentrated electrolytes on the electrochemical performance of silicon nanoparticles[J]. ChemElectroChem, 2020,7(5):1135-1141.
|
[11] |
Chen L B, Wang K, Xie X H, et al. Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive[J]. Electrochemical and Solid State Letters, 2006,9(11):A512-A515.
|
[12] |
Aurbach D, Weissman I, Zaban A, et al. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts[J]. Electrochimica Acta, 1994,39(1):51-71.
|
[13] |
Yoon T, Milien M S, Parimalam B S, et al. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chemistry of Materials, 2017,29(7):3237-3245.
|
[14] |
Zhuang G V, Ross P N. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy[J]. Electrochemical and Solid-State Letters, 2003,6(7):A136-A139.
|
[15] |
Huang J, Hollenkamp A F. Thermal behavior of ionic liquids containing the FSI anion and the Li+ cation[J]. Journal of Physical Chemistry C, 2010,114(49):21840-21847.
|
[16] |
Budi A, Basile A, Opletal G, et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and n-methyl-n-propyl-pyrrolidinium-bis(fluorosulfonyl) imide[J]. Journal of Phy-sical Chemistry C, 2012,116(37):19789-19797.
|
[17] |
Diao Y, Xie K, Xiong S Z, et al. Insights into Li-S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling[J]. Journal of The Ele-ctrochemical Society, 2012,159(11):A1816-A1821.
|
[18] |
Nguyen C C, Woo S W, Song S W. Understanding the interfacial processes at silicon-copper electrodes in ionic liquid battery electrolyte[J]. Journal of Physical Chemistry C, 2012,116(28):14764-14771.
|
[19] |
Ota H, Sakata Y, Wang X M, et al. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes[J]. Journal of the Electrochemical Society, 2004,151(3):A437-A446.
|
[20] |
Howlett P C, Brack N, Hollenkamp A F, et al. Characterization of the lithium surface in n-methyl-n-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temper-ature ionic liquid electrolytes[J]. Journal of the Electrochemical Society, 2006,153(3):A595-A606.
|
[21] |
Deepa M, Agnihotry S A, Gupta D, et al. Ion-pairing effects and ion-solvent-polymer interactions in LiN(CF3SO2)2-PC-PMMA electrolytes: a FTIR study[J]. Electrochimica Acta, 2004,49(3):373-383.
|
[22] |
Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of The Electrochemical Society, 2009,156(8):A694-A702.
|
[23] |
Lee H, Lee D J, Lee J N, et al. Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal[J]. Electrochimica Acta, 2014,123:419-425.
|
[24] |
Nguyen C C, Song S W. Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte[J]. Electrochemistry Communications, 2010,12(11):1593-1595.
|
[25] |
Xiao A, Yang L, Lucht B L, et al. Examining the solid electrolyte interphase on binder-free graphite electrodes[J]. Journal of The Electrochemical Society, 2009,156(4):A318-A327.
|
[26] |
Etacheri V, Haik O, Goffer Y, et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir, 2012,28(1):965-976.
doi: 10.1021/la203712s
URL
pmid: 22103983
|
[27] |
Michan A L, Parimalam B S, Leskes M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016,28(22):8149-8159.
doi: 10.1021/acs.chemmater.6b02282
URL
|
[28] |
Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017,27(10):1605989.
|